Skip to main content

The Possible Existence of a Charge Transfer State which Preceeds the Formation of (BChl)2 + BPh in Rhodobacter sphaeroides Reaction Centers

  • Chapter
The Photosynthetic Bacterial Reaction Center

Part of the book series: NATO ASI Series ((NSSA,volume 149))

Abstract

The nature of the first electron transfer step in the photosynthetic reaction center protein is far from certain. Several investigators have considered a monomeric BChl to be important in promoting forward electron transfer from (BChl)2* to BPh. The center of the BChl is positioned in the X-ray crystal structure 0.25nm from the center of the (BChl)2, measured in a direction parallel with the z-axis of the protein (4,5). The monomer is displaced out of the direct line joining (BChl)2 and BPh centers but nevertheless it remains an obvious candidate to be on the electron transfer reaction pathway. However, careful searches in the picosecond time domain for absorbance changes that may be associated with transient redox changes on the BChl have failed to demonstrate its involvment in the sequence over a wide temperature range (1–3 although see ref. 6). Instead, spectroscopic investigations with picosecond and subpicosecond resolution have revealed that the loss of the excited singlet state of the special pair of bacteriochlorophylls, (BChl)2*, coincides with the appearance of the reduced bacteriopheophytin (BPh). Thus, the formation of the state (BChl)2 + BPh, which is positioned some 0.2ev below the (BChl)2* state appears to occur in a single step with a rate of approximately 3×1011 s−1 (1–3). This separates charge across the approximately 1.1 nm between the centers of the (BChl)2 and BPh, again measured along the line parallel to the z-axis of the protein (4,5). Because of the closly matched kinetics of (BChl)2* decay and BPh appearance, the involvement of BChl as a conventional redox carrier is cryptic and in doubt. However, it is acknowledged in these studies that, for technical reasons, levels of BChl+ or BChl must achieve 15% of the total reaction center population to be detected with any certainty. Thus, there are several viable models (see refs 1–3,6,7–10 for discussion) that can explain these early steps in photosynthesis leading to formation of (BChl)2 + BPh. These include:

  1. 1.

    The BChl plays no part in electron transfer from (BChl)2 to BPh.

  2. 2.

    The BChl serves to increase the electron coupling between (BChl)2 and BPh by the mechanism of superexchange.

  3. 3.

    The BChl is a bona fide redox agent that accepts an electron from (BChl)2* to form (BChl)2 + BChl which is followed by electron donation to BPh.

  4. 4.

    The BChl is a bona fide redox agent, but the reaction sequence is that singlet energy transfer from (BChl)2* to BChl first induces an electron transfer from BChl to BPh to form BChl+BPh. The cation BChl+ so formed then moves to the (BChl)2.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kirmaier C, Holten, D and Parson W.W. FEBS Letters 185; 76–82 (au]).

    Google Scholar 

  2. Woodbury N.W., Becker M, Middendorf D and Parson W.W. Biochemistry 24; 7516–7521 (1985).

    Article  PubMed  CAS  Google Scholar 

  3. Martin J-L, Breton, J, Hoff A.J., Migus, A., and Antonetti, A. Proc. Natl Acad Sci; U.S.A. 83 957–961 (1986).

    Article  PubMed  CAS  Google Scholar 

  4. Allen, J.P., Feher, G., Yeates, T.O., Komiya, H and Rees, D.C., Proc Natl Acad Sci; U.S.A. 84 5730–5734 1987.

    Article  PubMed  CAS  Google Scholar 

  5. Chang, C.H., Tiède, D.M., Tang, J., Smith, U., Norris, J., and Schiffer, M.; FEBS Letts. 205 82–86 (1986).

    Article  CAS  Google Scholar 

  6. Shuvalov V.A., and Klenanik V.A., FEBS Letters 160 51–55 (1983).

    Article  CAS  Google Scholar 

  7. Marcus R.A., Chem. Phys. Letters 133 471–477 (1987).

    Article  CAS  Google Scholar 

  8. Haberkorn, R., Michel-Beyerle, M.E. and Marcus, R.A., Proc. Natl Acad Sci U.S.A. 76 4185–4189 (1979).

    Article  PubMed  CAS  Google Scholar 

  9. Kirmaier, C., Holten D., Parson, W.W. Biochim Biophys Acta 810 33–42 (1985).

    Article  CAS  Google Scholar 

  10. Holten D., Hoganson C., Windsor M.W., Schenck C.C., Parson W.W., Migus A., Fork R.L., and Shank C.V., Biochim Biophvs Acta. 592 461–473 (1980).

    Article  CAS  Google Scholar 

  11. Popovic Z.D., Kovacs, G.J., Vincett, P.S., Alegria, G., and Dutton, P.L. Biochim, Biophys Acta 851 38–48 (1986).

    Article  CAS  Google Scholar 

  12. Gunner, M.R., and Dutton, P.L. Accompaning manuscript, this volume.

    Google Scholar 

  13. Gunner, M.R., and Dutton, P.L. Submitted to Biophys J.

    Google Scholar 

  14. Dutton, P.L., Alegria, A., and Gunner, M.R. Biophys J. Abstracts for Biophysical Meeting. February. (1988).

    Google Scholar 

  15. Wraight, C.A. and Clayton, R.K., Biochim Biophys Acta.

    Google Scholar 

  16. Cho, H.M., Mancino, L.J., and Blankenship, R.E., Biophys J 45 455–461 (1984).

    Article  PubMed  CAS  Google Scholar 

  17. Loach, P.A., and Sekura, D.L., Biochemistry 7, 2642–2649 (1968).

    Article  PubMed  CAS  Google Scholar 

  18. Popovic, Z.D., Kovacs, G.J., Vincett, P.S. and Dutton, P.L. Dutton, Chem Phys Letts 116 405–410 (1985).

    Article  CAS  Google Scholar 

  19. Popovic, Z.D., Kovacs, G.J., Vincett, P.S., Alegria, G., Dutton, P.L., Chem. Phys 110 227–237 (1986).

    Article  CAS  Google Scholar 

  20. Gopher, A., Blatt, Y., Schoenfeld, M., Okamura, M.Y., Feher, G., and Montai, M., Biophvs J 48. 311–320 (1985).

    Article  CAS  Google Scholar 

  21. Packham, N.K., Mueller, P., and Dutton, P.L., Biochim Biophys Acta In press.

    Google Scholar 

  22. Feher, G., Arno, T.R., and Okamura, M.Y., This volume.

    Google Scholar 

  23. Campillo, A.J., Hyer, R.C., Monger, T.G., Parson, W.W., and Shapiro, S.L., Proc Natl Acad Sci U.S.A. 74 1997–2001 (1977).

    Article  PubMed  CAS  Google Scholar 

  24. Leigh, J.S., and Dutton, P.L., Biochem Biophys Res. Comm 46 414–418 (1972).

    Article  PubMed  CAS  Google Scholar 

  25. Tiede, D.M., Prince, R.C., and Dutton, P.L., Biochim Biophys Acta 449 447–467 (1976).

    Article  PubMed  CAS  Google Scholar 

  26. Prince, R.C., Tiede, D.M., Thornber, J.P., and Dutton, P.L., Biochim Biophys Acat 462 731–747 (1977).

    Article  CAS  Google Scholar 

  27. Prince, R.C., Dutton, P.L., Clayton, R.K., Biochim Biophys Acta 502 354–358 (1978).

    Article  PubMed  CAS  Google Scholar 

  28. Tiede, D.M., Mueller, P., and Dutton, P.L., Biochim Biophys Acta 681 191–201 (1982).

    Article  CAS  Google Scholar 

  29. Alegria, G., and Dutton, P.L., In “Cytochrome Systems: Molecular Biology and Bioenergetics” (S. Papa, B. Chance, L. Ernster and J. Jaz eds). Plenum Press, London. In press, (1987).

    Google Scholar 

  30. Netzel, T.L., Rentzepis, P.M., Tiede, D.M., Prince, R.C., and Dutton, P.L., Biochim Biophvs Acta 460 467–479 (1977).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer Science+Business Media New York

About this chapter

Cite this chapter

Dutton, P.L., Alegria, G., Gunner, M.R. (1988). The Possible Existence of a Charge Transfer State which Preceeds the Formation of (BChl)2 + BPh in Rhodobacter sphaeroides Reaction Centers. In: Breton, J., Verméglio, A. (eds) The Photosynthetic Bacterial Reaction Center. NATO ASI Series, vol 149. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0815-5_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0815-5_20

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-0817-9

  • Online ISBN: 978-1-4899-0815-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics