Structure of the Reaction Center from Rhodobacter sphaeroides R-26 and 2.4.1

  • J. P. Allen
  • G. Feher
  • T. O. Yeates
  • H. Komiya
  • D. C. Rees
Chapter
Part of the NATO ASI Series book series (NSSA, volume 149)

Abstract

Detailed theories of electron transfer in reaction centers (RCs) require knowledge of their three dimensional structure. We have determined the structure of RCs from Rb. sphaeroides by x-ray diffraction of single crystals. Diffraction data of RCs from both the carotenoidless mutant, R-26, and the wild type strain, 2.4.1 were analyzed at resolutions of 2.8 Å and 3.5 Å respectively. These structures have been refined to current R-factors of 25% (for the R26 data) and 22% (for the 2.4.1. data). Details concerning data collection and analysis, with descriptions of the structure of the RC from the R-26 strain have been presented elsewhere (1–4). In this report we shall focus on the general features of the structure and compare them with those reported for the RC from R. viridis (5). The structures from these two species have been shown by the molecular replacement method to be homologous (6,7). We shall emphasize the importance of the structural features to the function of electron transfer.

Keywords

Electron Transfer Reaction Center Aromatic Residue Charged Residue Rhodobacter Sphaeroides 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. P. Allen, G. Feher, T. O. Yeates, H. Komiya, and D. C. Rees, Structure of the reaction center from Rhodobacter sphaeroides R-26: The cofactors, Proc. Natl. Acad. Sci. USA 84: 5730–5734 (1987).PubMedCrossRefGoogle Scholar
  2. 2.
    J. P. Allen, G. Feher, T. O. Yeates, H. Komiya, and D. C. Rees, Structure of the reaction center from Rhodobacter sphaeroides R-26: The protein subunits, Proc. Natl. Acad. Sci. USA 84: 6162–6166 (1987).PubMedCrossRefGoogle Scholar
  3. 3.
    T. O. Yeates, H. Komiya, D. C. Rees, J. P. Allen, and G. Feher, Structure of the reaction center from Rhodobacter sphaeroides R-26: Membrane protein interactions, Proc. Natl. Acad. Sci. USA 84: 6438–6442 (1987).PubMedCrossRefGoogle Scholar
  4. 4.
    J. P. Allen, G. Feher, T. O. Yeates, H. Komiya, and D. C. Rees, Structure of the reaction center from Rhodobacter sphaeroides R-26: Pigment protein interactions, Proc. Natl. Acad. Sci. USA, in preparation.Google Scholar
  5. 5.
    H. Michel, O. Epp, and J. Deisenhofer, Pigment-protein interactions in the photosynthetic reaction center from Rhodopseudomonas viridis, EMBO J. 5: 2445–2451 (1986).PubMedGoogle Scholar
  6. 6.
    J. P. Allen, G. Feher, T. O. Yeates, D. C. Rees, J. Deisenhofer, H. Michel, and R. Huber, Structural homology of reaction centers from Rhodopseudomonas sphaeroides and Rhodopseudomonas viridis as determined by x-ray diffraction, Proc. Natl. Acad. Sci. USA, 83:8589–8593 (1986).PubMedCrossRefGoogle Scholar
  7. 7.
    C. H. Chang, D. Tiede, J. Tang, U. Smith, J. Norris, M. Schiffer, Structure of Rhodopseudomonas sphaeroides R-26 reaction center, FEBS Letters 205: 82–86 (1986).PubMedCrossRefGoogle Scholar
  8. 8.
    W. Kabsch, A solution for the best rotation function to relate two sets of vectors, Acta Crystallogr. A32:922–923 (1976).Google Scholar
  9. 9.
    D. D. De Vault, “Quantum Mechanical Tunnelling in Biological Systems,” Cambridge University Press (1984).Google Scholar
  10. 10.
    R. A. Marcus and N. Sutin, Electron transfers in chemistry and biology, Biochim. Biophys. Acta 811: 265–302 (1985).CrossRefGoogle Scholar
  11. 11.
    W. W. Parson, S. Creighton, and A. Warshel. Calculations of Spectroscopic Properties and Electron transfer kinetics of Photosynthetic reaction centers, J. Phys. Chem., in press.Google Scholar
  12. 12.
    M. E. Michel-Beyerle, M. Plato, J. Deisenhofer, H. Michel, M. Bixon, J. Jortner, Unidirectionality of charge separation in reaction centers of photosynthetic bacteria, Biochem. Biophys. Acta, in press.Google Scholar
  13. 13.
    B. Lee and F. M. Richards, The interpretation of protein structures: estimation of static accessibility, J. Mol. Biol. 55: 379–400 (1971).PubMedCrossRefGoogle Scholar
  14. 14.
    J. P. Allen, G. Feher, T. O. Yeates, and D. C. Rees, Structure analysis of the reaction center from Rhodopseudomonas sphaeroides: electron density map at 3.5 Å resolution, in: “Progress in Photosynthesis Research,” J. Biggins, ed., M. Nijohff/W. Junk, The Netherlands, Vol. 1, pp.4375–4378 (1987).Google Scholar
  15. 15.
    G. Feher, R. A. Isaacson, M. Y. Okamura, and W. Lubitz, ENDOR of exchangeable protons of the reduced intermediate acceptor in reaction centers from Rhodobacter sphaeroides R-26. These proceedings.Google Scholar
  16. 16.
    W. W. Parson, and B. Ke, Primary photochemical reactions, in “Photosynthesis,” Govindjee, ed., Academic Press, New York, pp. 331–385 (1982).CrossRefGoogle Scholar
  17. 17.
    C. Kirmaier and D. Holten, Primary photochemistry of reaction centers from the photosynthetic purple bacteria, Photosynth. Res., 13:225–260 (1987).CrossRefGoogle Scholar
  18. 18.
    B. A. Barry and G. T. Babcock, Tyrosine radicals are involved in the photosynthetic oxygen evolving system, Proc. Natl. Acad. Sci. USA 84: 7099–7103 (1987).PubMedCrossRefGoogle Scholar
  19. 19.
    R. J. Debus, B. A. Barry, G. T. Babcock, L. McIntosh, Site-directed mutagenesis identifies a tyrosine radical involved in the photosynthetic oxygen evolving system, Proc. Natl. Acad. Sci. USA, in press.Google Scholar
  20. 20.
    W. Warwicker and H. C. Watson, Calculation of the electric potential in the active site cleft due to α-helix dipoles, J. Mol. Biol. 157: 671–679 (1982).PubMedCrossRefGoogle Scholar
  21. 21.
    M. Y. Okamura, G. Feher, and N. Nelson, Reaction centers in: “Photosynthesis,” Govindjee, ed. Academic Press, New York, pp. 195–272 (1982).CrossRefGoogle Scholar
  22. 22.
    R. J. Debus, G. Feher, and M. Y. Okamura, Iron-depleted reaction centers from Rhodopseudomonas sphaeroides R-26.1: Characterization and reconstitution with Fe2+, Mn2+, Co2+, Ni2+, Cu2+, Zn2+, Biochemistry 25: 2276–2287 (1986).PubMedCrossRefGoogle Scholar
  23. 23.
    P. Marot, and C. A. Wraight, Light induced proton binding-unbinding dynamics in reaction centers from Rhodobacter sphaeroides, in: “Progress in Photosynthesis Research,” J. Biggins, ed., M. Nijhoff/W. Junk, The Netherlands, Vol. 2, pp. 6.401–6.404 (1987).Google Scholar
  24. 24.
    P. H. McPherson, M. Y. Okamura, G. Feher, and M. Schonfeld, Light induced proton uptake by RCs from Rb. sphaeroides R-26.1 Biophys. J. (Abst.) 51:225a (1987).Google Scholar
  25. 25.
    P. H. McPherson, M. Y. Okamura, and G. Feher, Light-induced proton uptake by photosynthetic reaction centers from Rb. sphaeroides R-26, manuscript in preparation.Google Scholar
  26. 26.
    W. A. Hendrickson, Stereochemically restrained refinement of macromolecules structures, Methods Enzymol 115: 252–270 (1985).PubMedCrossRefGoogle Scholar
  27. 27.
    M. Lutz, I. Agalidis, G. Hervo, R.J. Cogdell, and F. Reiss-Husson, On the state of carotenoids bound to reaction centers of photosynthetic bacteria: A Resonance Raman study, Biochim. Biophys. Acta 503: 287–303 (1987).Google Scholar
  28. 28.
    T. Kokitani, B. Honig, and A. R. Crofts, Theoretical studies of the electrochromic response of carotenoids in photosynthetic membranes, Biophys. J. 39: 57–63 (1982).CrossRefGoogle Scholar
  29. 29.
    H. A. Frank, B. W. Chadwick, S. Taremi, S. Kolaczkowski, M. K. Bowman, Singlet and triplet absorption spectra of carotorenoids bound in the reaction centers of Rhodopseudomonas sphaeroides R26, FEBS Letters 203: 157–163 (1986).CrossRefGoogle Scholar
  30. 30.
    C. C. Schenck, P. Mathias, M. Lutz, Triplet formation and triplet decay in reaction centers from the photosynthetic bacterium Rhodopseudomonas sphaeroides, Photochem. Photobiol. 39 407–417 (1984).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1988

Authors and Affiliations

  • J. P. Allen
    • 1
  • G. Feher
    • 1
  • T. O. Yeates
    • 2
  • H. Komiya
    • 2
  • D. C. Rees
    • 2
  1. 1.University of California, San DiegoLa JollaUSA
  2. 2.University of California, Los AngelesLos AngelesUSA

Personalised recommendations