Advertisement

The Nature of Excited States and Intermediates in Bacterial Photosynthesis

  • Steven G. Boxer
  • Richard A. Goldstein
  • David J. Lockhart
  • Thomas R. Middendorf
  • Larry Takiff
Chapter
Part of the NATO ASI Series book series (NSSA, volume 149)

Abstract

In bacterial reaction centers (RCs) charge separation is initiated by excitation of the special pair primary electron donor (P) to its first excited singlet state (1P). Within a few ps an electron moves from P to I, the intermediate electron acceptor (Woodbury et al., 1985; Breton et al., 1986; Martin et al., 1986). As described in the paper by Flemming, Martin, and Breton in this volume, the rate of this initial reaction increases as the temperature is lowered. The electron transfers from I· to QA within about 200ps at room temperature and somewhat faster at lower temperature (Kirmaier and Holten, 1987). For most of the experiments described in this paper we have used quinone-depleted RCs when the species is Rhodobacter sphaeroides and Q·-RCs when the species is Rhodopseudomonas viridis. In this case the fate of the initial charge-separated radical pair state, 1(P+·I·), is more complex, as illustrated in Figure 1. 1(P+·I·) can decay either by charge recombination to 1PI or ground state PI, or the spin multiplicity of the radical pair can evolve to 3(P+·I·). 3(P+·I·) can decay by charge recombination to 3PI or the spin multiplicity can continue evolving back to 1(P+·I·). 3PI can decay by intersystem crossing or reform 3(P+·I·). Interconversion between the singlet and triplet radical pair states is characterized by a parameter ω, whose value depends on the magnetic properties of the radicals P+· and I· and on the externally applied magnetic field strength (Boxer et al., 1983).

Keywords

Triplet State Charge Recombination Transition Dipole Moment Stark Effect Special Pair 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Boxer, S.G., Chidsey, C.E.D., and Roelofs, M.G., 1983, Ann. Rev. Phys. Chem. 34:389.CrossRefGoogle Scholar
  2. Boxer, S.G., 1983, Biochim. Biophys. Acta Rev. Bioenerg. 726:265.CrossRefGoogle Scholar
  3. Boxer, S.G., Middendorf, T.R., and Lockhart, D.J., 1986a, Chem. Phys. Lett. 123:476.CrossRefGoogle Scholar
  4. Boxer, S.G., Lockhart, D.J., and Middendorf, T.R., 1986b, FEBS Lett. 200:237.CrossRefGoogle Scholar
  5. Boxer, S.G., Gottfried, D., Lockhart, D.J., and Middendorf, T.R., 1987a, J. Chem. Phys., 86:2439.CrossRefGoogle Scholar
  6. Boxer, S.G., Lockhart, D.J. and Middendorf, T.R., 1987b, Springer Proc. Phys., 20:80.CrossRefGoogle Scholar
  7. Breton, J., Martin, J.-L., Migus, A., Antonetti, A. and Orszag, A., 1986, Proc. Natl. Acad. Sci. U.S.A., 83:5121.PubMedCrossRefGoogle Scholar
  8. Chidsey, C.E.D., Takiff, L., Goldstein, R., and Boxer, S.G., 1985, Proc. Natl. Acad. Sci. U.S.A. 82:6850.PubMedCrossRefGoogle Scholar
  9. DeLeeuv, D., Malley, M., Butterman, G., Okamura, M.Y., and Feher, G., 1982, Biophys. J., 37:111a (abstract).Google Scholar
  10. Goldstein, R.A. and Boxer, S.G., 1987, Biophys. J., 51:937.PubMedCrossRefGoogle Scholar
  11. Goldstein, R.A., Takiff, L. and Boxer, S.G., 1988a, Biochim. Biophys. Acta, submitted.Google Scholar
  12. Goldstein, R.A., Takiff, L. and Boxer, S.G., 1988b, Biochim. Biophys. Acta, submitted.Google Scholar
  13. Hayes, J.M. and Small, G.J., 1986, J. Phys. Chem., 90:4928.CrossRefGoogle Scholar
  14. Kirmaier, C. and Holten, D., 1987, Photosyn. Res., 13:225.CrossRefGoogle Scholar
  15. Levanon, H. and Norris, J.R., 1978, Chem. Rev., 78:185.CrossRefGoogle Scholar
  16. Lockhart, D.J. and Boxer, S.G., 1987a, Biochem. 26:664.CrossRefGoogle Scholar
  17. Lockhart, D.J. and Boxer, S.G., 1987b, Proc. Natl. Acad. Sci, in press.Google Scholar
  18. Lockhart, D.J. and Boxer, S.G., 1987c, Chem. Phys. Lett., in press.Google Scholar
  19. Martin, J.-L., Breton, J., Hoff, A.J., Migus, A. and Antonetti, A., 1986, Proc. Natl. Acad. Sci. U.S.A., 83:957.PubMedCrossRefGoogle Scholar
  20. Meech, S.R., Hoff, A.J., and Wiersma, D.A., 1985, Chem. Phys. Lett., 121:287.CrossRefGoogle Scholar
  21. Meech, S.R., Hoff, A.J., and Wiersma, D.A., 1986, Proc. Natl. Acad. Sci. U.S.A., 83:9464.PubMedCrossRefGoogle Scholar
  22. Nagakura, S., 1975, in “Excited States,” E. Liu, ed., 2:321, Academic Press, New York.Google Scholar
  23. Norris, J.R., Liu C.P., and Budil, D.E., 1987, J. Chem. Soc. Faraday Trans., 83:12.Google Scholar
  24. Takiff, L. and Boxer, S.G., 1988a, Biochim. Biophys. Acta, in press.Google Scholar
  25. Takiff, L. and Boxer, S.G., 1988b, J. Am. Chem. Soc., submitted.Google Scholar
  26. Thijssen, H.P.H., van den Berg, R., and Völker, S., 1985, Chem. Phys. Lett. 120:503.CrossRefGoogle Scholar
  27. Won, Y. and Friesner, R.A., 1987, Proc. Natl. Acad. Sci. U.S.A., 84:5511.PubMedCrossRefGoogle Scholar
  28. Woodbury, N.W. and Parson, W.W., 1984, Biochim. Biophys. Acta, 767:345.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1988

Authors and Affiliations

  • Steven G. Boxer
    • 1
  • Richard A. Goldstein
    • 1
  • David J. Lockhart
    • 1
  • Thomas R. Middendorf
    • 1
  • Larry Takiff
    • 1
  1. 1.Department of ChemistryStanford UniversityStanfordUSA

Personalised recommendations