Advertisement

Molecular Dynamics Simulation of the Primary Processes in the Photosynthetic Reaction Center of Rhodopseudomonas viridis

  • H. Treutlein
  • K. Schulten
  • J. Deisenhofer
  • H. Michel
  • A. Brünger
  • M. Karplus
Chapter
Part of the NATO ASI Series book series (NSSA, volume 149)

Abstract

We have carried out a computer simulation of the photosynthetic reaction center of Rhodopseudomonas viridis based on the available molecular structure1,2. Our simulation employed the CHARMM program3 in conjunction with the socalled stochastic boundary method 4. This method allowed us to study a functionally important segment of the photosynthetic reaction center with 3634 atoms, including the prosthetic groups involved in the primary electron transfer processes. Electron transfer has been modeled by re-charging the respective chromophores assuming charge distributions based on quantumchemical (MNDO) calculations. We discuss to which extent the protein matrix and chromophore arrangement control the relevant electron transfer steps.

Keywords

Electron Transfer Reaction Center Special Pair Photosynthetic Reaction Center Iron Depletion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Deisenhofer, O. Epp, K. Miki, R. Huber, H. Michel, X-ray Structure Analysis of a Membrane Protein Complex J Molec Biol 180:385 (1984).PubMedCrossRefGoogle Scholar
  2. 2.
    J. Deisenhofer, O. Epp, K. Miki, R. Huber, H. Michel, Structure of the protein subunits in the photosynthetic reaction center of Rhodopseudomonas viridis at 3 Å resolution, Nature 318: 618 (1985).PubMedCrossRefGoogle Scholar
  3. 3.
    B. R. Brooks et al., CHARMM: A Program for Macromolecular Energy Minimization, and Dynamics Calculations, J Comp Chem 4:187 (1983).CrossRefGoogle Scholar
  4. 4.
    C. L. Brooks, A. Brünger, M. Karplus, Active Site Dynamic s in Protein Molecules: A Stochastic Boundary Molecular-Dynamics Approach, Biopolymers 24: 843 (1985).PubMedCrossRefGoogle Scholar
  5. 5.
    H. Treutlein et al., Electrostatic control of electron transfer in the photosynthetic reaction center of Rps. viridis, contribution to this workshop.Google Scholar
  6. 6.
    Dewar Group, University of Texas at Austin, Austin, TEXAS 78712.Google Scholar
  7. 7.
    J. Deisenhofer’s contribution to this workshop.Google Scholar
  8. 8.
    J. Kuriyan et al., Effect of anisotropy and anharmonicity on protein crystallo-graphic refinement, J Molec Biol 190:227 (1986).PubMedCrossRefGoogle Scholar
  9. 9.
    C. Kirmaier et al., Primary photochemistry of iron-depleted an d zinc-reconstituted reaction centers from Rps. sphaeroides, PNAS 83:6407 (1986).PubMedCrossRefGoogle Scholar
  10. 10.
    R. J. Debus, G. Feher, M. Y. Okamura, Iron-depleted React ion Centers from Rps. sph. R-26.1: Characterization and Reconstitution with Fe 2+, Mn 2+, Co 2+, Ni 2+, Cu 2+ and Zn 2+, Biochemistry 25: 2276 (1986).PubMedCrossRefGoogle Scholar
  11. 11.
    J. P. Allen et al., Strucural homology of reaction centers f rom Rps. sph. and Rps. v. as determined by X-ray diffraction, PNAS 83:8589 (1986).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1988

Authors and Affiliations

  • H. Treutlein
    • 1
  • K. Schulten
    • 1
  • J. Deisenhofer
    • 2
  • H. Michel
    • 2
  • A. Brünger
    • 3
  • M. Karplus
    • 3
  1. 1.Physik-DepartmentTechnische Universität MünchenGarchingGermany
  2. 2.Max-Planck-Institut für BiochemieMartinsriedGermany
  3. 3.Department of ChemistryHarvard UniversityCambridgeUSA

Personalised recommendations