Advertisement

Reaction Centers of Purple Bacteria with Modified Chromophores

  • H. Scheer
  • D. Beese
  • R. Steiner
  • A. Angerhofer
Chapter
Part of the NATO ASI Series book series (NSSA, volume 149)

Abstract

Reaction centers (RC*) of purple bacteria are generally composed of three subunits designated H(igh), M(edium) and L(ow) according to their apparent molecular weigths on SDS PAGE. Four molecules of bacteriochlorophyll (Bchl) are bound to it, together with two bacteriopheophytins (Bphe), two quinones (Q) and one non-heme iron. The crystal structure of RC from the BChl b-containing purple photosynthetic bacterium, Rp. viridis (Deisenhofer et al, 1984) and from the Bchl a-containing Rb. sphaeroides (Chang et al., 1986; Allen et al., 1987) shows a C2 — symmetry axis which divides the reaction center into two very similar sets of pigments interacting mainly with the L and M-subunits, respectively. The reaction center is asymmetric, however, in functional terms. The primary charge separation takes place most probably from the special pair situated on the symmetry axis, via BpheL and QA situated on the L-(or ‘active’) branch of the complex, to QB on the M or ‘inactive’ branch (Deisenhofer et al., 1984; Vermeglio and Paillotin, 1982; Zinth et al., 1985).

Keywords

Reaction Center DEAE Cellulose Photosynthetic Bacterium Purple Bacterium Photosynthetic Reaction Center 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Abbreviations

RC

reaction center

Bchl

bacteriochlorophyll

Bphe

bacteriopheophytin, the location of these pigments on the L- or M-branch of the RC is indicated by the respective subscript

P870

primary donor

Chl

chlorophyll

Q

quinone; subscript indicates the primary (A) or secondary acceptor (B) located on the L- and M-branch, respectively

cd

circular dichroism, ESR = electron spin resonance

SDS-PAGE

sodium dodecylsulfate polyacrylamide gel electrophoresis, LDAO = dimethyldodecylamineoxide, TX-100 = Triton X-100

Rb.

Rhodobacter

Rp.

Rhodopseudomonas, Rs. = Rhodospirillum, Cf. = Chloroflexus, Cr. = Chromatium.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allen, J.P, G. Feher, T.O. Yeates, D.C. Rees, J. Deisenhofer, H. Michel und R. Huber, 1986, Structural homology of reaction centers from Rhodopseudomonas sphaeroides and Rhodopseudomonas viridis as detected by x-ray diffraction, Proc. Natl. Acad. sci. USA, 83:8589.PubMedCrossRefGoogle Scholar
  2. Angerhofer, A., J.U. von Schütz and H.C. Wolf, 1985, Fluorescence-ODMR of light harvesting pigments of photosynthetic bacteria, Z. Naturforsch. 40c:379.Google Scholar
  3. Angerhofer, A., R.J. Cogdell and M.F. Hipkins, 1986 A spectral characterization of the light harvesting pigment-protein complexes from Rhodopseudomonas acidoprila. Biochim. Biophys. Acta 848:333.CrossRefGoogle Scholar
  4. Beese, D., Diplomarbeit, Universität München, 1984.Google Scholar
  5. Beese, D., R. Steiner, H. Scheer, A. Angerhofer, B. Robert, and M. Lutz, 1987, Chemically modified photosynthetic bacterial reaction centers: Circular dichroism, Raman resonance, low temperature absorption, fluorescence and ODMR spectra and polypeptide composition of borohydride treated reaction centers from Rhodobacter sphaeroides R26, Photochem. Photobiol., in press.Google Scholar
  6. Breton, J., J. Deprez, B. Tavitian, and E. Nabedryk, 1986, Spectroscopy, structure and dynamics in the reaction center of Rhodopseudomonas viridis, in: “Progress in Photosynthesis Research,” J. Biggins, ed., M. Nijhoff, Dordrecht, Vol. I., p. 387.Google Scholar
  7. Chadwick, B.W., C. Zang, R.J. Cogdell, and H.A. Frank, 1987, The effects of lithium dodecyl sulfate and sodium borohydride on the absorption spectrum of the B800-850 light harvesting complex from Rhodopseudomonas acidophila 77 50, Biochim. Biophys. Acta, in press; see also contribution to this book.Google Scholar
  8. Chang, C.-H., D. Tiede, J. Tang, V. Smith, J. Norris, and M. Schiffer, 1986, Structure of Rhodopseudomonas sphaeroides R-26 reaction centers, FEBS Lett., 205:82.PubMedCrossRefGoogle Scholar
  9. Clayton, R.K. and R.T. Wang, 1971, Photochemical Reaction Centers from Rhodopseudomonas sphaeroides., Methods Enzymol, 23:696.CrossRefGoogle Scholar
  10. Clayton, R.K. and B.J. Clayton, 1981, B850 pigment-protein complex of Rhodopseudomonas sphaeroides: extinction coefficients, circular dichroism, and the reversible binding of bacteriochlorophyll, Proc. Natl. Acad. Sci. USA 78:5583.PubMedCrossRefGoogle Scholar
  11. Crestfield, A.M., S. Moore and W.H. Stein, 1963, The preparation and enzymatic hydrolysis of reduced and S-Carboxymethylated proteins, J. Biol.Chem. 238:622.PubMedGoogle Scholar
  12. Deisenhofer, J., O. Epp, K. Miki, R. Huber and H. Michel, 1984, X-ray structure analysis of a membrane protein complex. Electron density map at 3 A resolution and å model of the chromophores of the photosynthetic reaction center from Rhodopseudomonas viridis, J. Mol. Biol., 180:385.PubMedCrossRefGoogle Scholar
  13. Ditson, S.L., R.C. Davis and R.M. Pearlstein, 1984, Relative enrichment of P-870 in photosynthetic reaction centers treated with sodium Borohydride, Biochim. Biophys. Acta, 766:623.CrossRefGoogle Scholar
  14. Fischer, S.F. and P.O.J. Scherer, 1987, On the early charge separation and recombination processes in bacterial reaction centers. Chem. Phys., 115:151; see also contribution to this book.Google Scholar
  15. Gottstein, J. and H. Scheer; 1983, Long-wavelength absorbing forms of bacteriochlorophyll a in solutions of Triton X-100, Proc. Natl. Acad. Sci. USA, 80:2231.PubMedCrossRefGoogle Scholar
  16. Holten, D., C. Kirmaier, and D. Levine, 1986, Picosecond studies of the kinetics and mechanisms of electron trasfer in bacterial reaction centers, in: “Progress in Photosynthesis Research,” J. Biggins, ed., M. Nijhoff, Dordrecht, Vol.1, p.169.Google Scholar
  17. Hiyama, T., T. Watanabe, M. Kobayashi, and M. Nakazato, 1972, Interaction of chlorophyll a’ with the 65kDa subunit protein of photosystem I reaction center, FEBS Lett., 214:97.CrossRefGoogle Scholar
  18. Loach, P.A., M. Kung, and B. Hales, 1975, Characterization of the phototrap in photosynthetic bacteria, Ann. N.Y. Acad. Sci., 244:297.PubMedCrossRefGoogle Scholar
  19. Maroti, P., C. Kirmaier, C. Wraight, D. Holten and R.M. Pearlstein, 1985, Photochemistry and electron transfer in borohydride-treated photosynthetic reaction centers, Biochim. Biophys. Acta, 810:132.CrossRefGoogle Scholar
  20. Michel-Beyerle, M.E., M. Plato, J. Deisenhofer, H. Michel, M. Bixon, and J. Jortner, 1987, Unidirectionality of charge separation in reaction centers of photosynthetic bacteria. Biochim. Biophys. Acta, submitted for publication, see also contibution to this book.Google Scholar
  21. Ogrodnik, A., H.W. Krüger, H. Orthuber, R. Haberkorn, M.E. Michel-Beyerle and H. Scheer, 1982, Recombination dynamics in bacterial photosynthetic reaction centers. Biophys. J., 39:91.PubMedCrossRefGoogle Scholar
  22. Parkes-Loach, P., J. Riccobono, and P. Loach, 1987, Preparation of subunits from the light-harvesting complex of Rhodospirilium rubrum, in: “Progress in Photosynthesis Research,” J. White, ed., M. Nijhoff, Dordrecht, Vol.II, p.25.Google Scholar
  23. Parson, W.W., 1982, Photosynthetic bacterial reaction centers: Interactions among the bacteriochlorophylls and bacterio-pheophytins, Ann. Rev. Biophys. Bioeng., 11:57.CrossRefGoogle Scholar
  24. Plumley, F.G. and G.W. Schmidt, 1987, Reconstitution of chlorophyll a/b light harvesting complexes — Xanthophyll-dependent assembly and energy transfer, Proc. Natl. Acad. Sci. USA, 84:146.PubMedCrossRefGoogle Scholar
  25. Robert, B., M. Lutz and D.M. Tiede, 1985, Selective photochemical reduction of either of the two bacteriopheophytins in reaction centers of Rhodopseudomonas sphaerqides R-26. FEBS Lett., 183:326.CrossRefGoogle Scholar
  26. Robert, B., R. Steiner, Q. Zhou, H. Scheer and M. Lutz, 1986, Structures of antenna complexes and reaction centers from bacteriochlorophyll b-containing bacteria: Resonance raman studies, in: Progress in Photosynthesis Research, J. Biggins, ed., M. Nijhoff, Dordrecht, p.I.411.Google Scholar
  27. Scheer, H., B. Paulke, J. Gottstein, 1985, Long-wavelength absorbing forms of bacteriochlorophyll a: II. Structural reguirements for formation in Triton X-100 micelles and in aqueous methanol and acetone, in: “Optical Properties and Structure of Tetrapyrroles”, G. Blauer, H. Sund, eds., de Gruyter, Berlin-New York, 1985, S.587.Google Scholar
  28. Scherz, A. and W.W. Parson, 1984, Oligomers of bacteriochlorophyll and bacteriopheophytin with spectroscopic properties resembling those found in photosynthetic bacteria, Biochim.-Biophys. Acta., 766:653.CrossRefGoogle Scholar
  29. Scherz, A. and W.W. Parson, 1986, Interactions of the bacteriochlorophylls in antenna bacteriochlorophyll-protein complexes of photosynthetic bacteria, Photosynthesis Res., 9:21; see also contribution to this book.Google Scholar
  30. Shuvalov, V.A., and L.N.M. Duysnes, 1986, Primary electron transfer reactions in modified reaction centers from Rhodopseudomonas sphaeroides. Proc. Natl. Acad. Sci. USA, 83:1690.PubMedCrossRefGoogle Scholar
  31. Shuvalov, V.A., A Ya. Shkuropatov, S.M. Kulakova, M.A. Ismailov and V.A. Shkuropatova, 1986, Photoreactions of bacteriopheophytins and bacteriochlorophylls in reaction centers of Rhodopseudomonas sphaeroides and Chloroflexus aurantiacus. Biochim. Biophys. Acta, 849:337.CrossRefGoogle Scholar
  32. Steiner, R., B. Kalumenos and H. Scheer, 1986, The photosynthetic apparatus of Ectothiorhodospira halochloris. 3. Effect of proteolytic digestion on the photoactivity, Z. Naturforsch., 41c:873.Google Scholar
  33. Theiler, R., F. Suter, H. Zuber and R.J. Cogdell, 1984, A comparison of the primary structures of the two B 800-850-apoproteins from wild-type Rhodopseudomonas sphaeroides strain 2.4.1. and a carotenoidless mutant strain R 26.1, FEBS Lett., 175:231.CrossRefGoogle Scholar
  34. Vermeglio, A. and G. Paillotin, 1982, Structure of Rhodopseudomonas viridis reaction centers, absorption and photoselection at low-temperature, Biochim. Biophys. Acta, 681:32.CrossRefGoogle Scholar
  35. Wasielewski, M.R., 1986, Ultrafast electron and energy trasfer in reaction center and antenna proteins from photosynthetic bacteria, presented at the VIIth Int. Congr. Photosynthesis, Providence, 1986.Google Scholar
  36. Wiemken, V. and R. Bachofen, 1984, Probing the smallest functional unit of the reaction center of Rhodospirillum rubrum G9 with proteinases, FEBS Lett., 166:155.CrossRefGoogle Scholar
  37. Zinth, W., M.C. Nuss, M.A. Franz, W. Kaiser, and H. Michel, 1983, in: Antennas and reaction centers of photosynthetic bacteria, M.E. Michel-Beyerle, ed., Springer, Berlin, p.286.Google Scholar

Copyright information

© Springer Science+Business Media New York 1988

Authors and Affiliations

  • H. Scheer
    • 1
  • D. Beese
    • 1
  • R. Steiner
    • 1
  • A. Angerhofer
    • 2
  1. 1.Botanisches Institut der UniversitätMünchen 19Germany
  2. 2.Physikalisches Institut der UniversitätStuttgart 80Germany

Personalised recommendations