Advertisement

Human Muscle Spindle Development

  • L.-E. Thornell
  • P.-O. Eriksson
  • D. A. Fischman
  • B. K. Grove
  • G. S. Butler-Browne
  • I. Virtanen

Abstract

Myosin, a major component of skeletal muscle, is encoded by a multigene family. Three major isoforms of the heavy chain subunits, one slow twitch and two fast twitch, have been distinguished in adult skeletal muscles of mammals (Whalen, 1985). These isoforms are related to specific, physiologically defined fiber types and their expression is clearly nerve-dependent. In chicken and amphibia, there is also another slow myosin heavy chain isoform — slow tonic myosin, present in multiply innervated, slow contracting fibers (Pierobon-Bormioli et al., 1980). This isoform is also expressed in mammalian skeletal muscle, but only in extraocular muscles and in some intrafusal fibers of muscle spindles (Pierobon-Bormioli et al., 1980; Rowlerson et al., 1985).

Keywords

Myosin Heavy Chain Muscle Spindle Intrafusal Fiber Slow Myosin Fast Myosin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barker, D., and Banks, R. W., 1986, The muscle spindle, in: “Myology”, A. G. Engel and B. Q Barker, eds., Mc Graw-Hill Co, New York, pp. 309–340.Google Scholar
  2. Bowden, R. E. M., 1963, Muscle spindles in the human foetus, Acta Biol. Univ. Szeged IX, 35-59.Google Scholar
  3. Butler-Browne, G. S., and Whalen, R. G., 1984, Myosin isozyme transitions occurring during the post-natal development of the rat soleus muscle. Dev. Biol., 102:324–334.PubMedCrossRefGoogle Scholar
  4. Colling-Saltin, A.-S., 1978, Enzyme histochemistry on skeletal muscle of the human foetus, J. Neurol. Sci., 39, 169–185.PubMedCrossRefGoogle Scholar
  5. Cuajunco, F., 1940, Development of the neuro-muscular spindle in human fetuses, Carnegie Inst. Wash. Pub. No 173 Contrib. to Embryology, 28, 95–128.Google Scholar
  6. Dhoot, G. K., 1986, Selective synthesis and degradation of slow skeletal myosin heavy chains in developing muscle fibers, Muscle & Nerve, 9, 155–164.CrossRefGoogle Scholar
  7. Dubowitz, V., 1965, Enzyme histochemistry of skeletal muscle, Part 2: Developing human muscle, J. Neurol. Neurosurg. Psychiat., 28, 519–524.Google Scholar
  8. Fenichel, G. M., 1966, A histochemical study of developing human skeletal muscle, Neurology (Minneap.), 16, 741–745.CrossRefGoogle Scholar
  9. Grove, B. K., Kurer, V., Lehner, C., Doetschman, T. C., Perriard, J.-C., and Eppenberger, H. M., 1984, A new 185,000-dalton muscle protein detected by monoclonal antibodies, J. Cell Biol., 98, 518–524.PubMedCrossRefGoogle Scholar
  10. Milburn, A., 1984, Stages in the development of cat muscle spindles, J. Embryol. exp. Morph., 82, 177–216.PubMedGoogle Scholar
  11. Miller, J. B., and Stockdale, F. E., 1986, Developmental regulation of the multiple myogenic cell lineages of the avian embryo, J. Cell Biol., 103, 2197–2208.PubMedCrossRefGoogle Scholar
  12. Narusawa, M., Fitzsimons, R. B., Izumo, S., Nadal-Ginard, B., Rubinstein, N. A., and Kelly, A. M., 1987, Slow myosin in developing rat skeletal muscle, J. Cell Biol., 104, 447–459.PubMedCrossRefGoogle Scholar
  13. Pierobon-Bormioli, S., Sartore, S., Vitadello, M., and Schiaffino, S., 1980, “Slow” myosins in vertebrate skeletal muscle. An immuno-fluorescence study, J. Cell Biol., 85, 672–681.CrossRefGoogle Scholar
  14. Pons, F., Léger, J. O. C, Chevallay, M., Tomé, F. M. S., Fardeau, M., and Léger, J. J., 1986, Immunocytochemical analysis of myosin heavy chains in human fetal skeletal muscles, J. Neurol. Sci., 76, 151–163.PubMedCrossRefGoogle Scholar
  15. Przedpelska-Ober, E. 1982, The development of muscle spindles in human fetuses. Anat. Anz. (Jena), 152:371–382.Google Scholar
  16. Rowlerson, A., Gorza, L., and Schiaffino, S, Immunohistochemical identification of spindle fibre types in mammalian muscle using type-specific antibodies to isoforms of myosin, in: “The Muscle Spindle,” I. A. Boyd, and M. H. Gladden, eds., Stockton Press, Glasgow (1985).Google Scholar
  17. Sawchak, J. A., Leung, B., and Shafiq, S. A., 1985, Characterization of a monoclonal antibody to myosin specific for mammalian and human type II muscle fibers, J. Neurol. Sci., 69, 247–254.PubMedCrossRefGoogle Scholar
  18. Thornell, L.-E., Billeter, R., Butler-Browne, G. S., Eriksson, P. O., Ringqvist, M., and Whalen R. G., 1984, Development of fiber types in human fetal muscle, An immunocytochemical study, J. Neurol. Sci., 66, 107–115.PubMedCrossRefGoogle Scholar
  19. Whalen, R. G., 1985, Myosin isoenzymes as molecular markers for muscle physiology, J. exp. Biol., 115, 43–53.PubMedGoogle Scholar
  20. Whalen, R. G., Sell, S. M., Butler-Browne, G. S., Schwartz, K., Bouveret, P., and Pinset-Hänström, I., 1981, Three myosin heavy-chain isozymes appear sequentially in rat muscle development, Nature (Lond.), 292, 805–809.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1988

Authors and Affiliations

  • L.-E. Thornell
    • 1
  • P.-O. Eriksson
    • 1
    • 2
  • D. A. Fischman
    • 3
  • B. K. Grove
    • 1
  • G. S. Butler-Browne
    • 4
  • I. Virtanen
    • 5
  1. 1.Department of AnatomyUniversity of UmeåUmeåSweden
  2. 2.Clinical Oral PhysiologyUniversity of UmeåUmeåSweden
  3. 3.Department of Cell BiologyCornell UniversityNew YorkUSA
  4. 4.Department de Biologie MoléculaireInstitut PasteurParisFrance
  5. 5.Department of PathologyUniversity of HelsinkiHelsinkiFinland

Personalised recommendations