Self-Assembly: A Biased Random Walk Through the Literature

  • B. Lindman
  • B. Ninham
Chapter
Part of the Ettore Majorana International Science Series book series (EMISS, volume 41)

Abstract

In his peroration the prophet of the Book of Ecclesiastes pronounced that “of the making of books there is no end, and in too much study there is much weariness of the spirit”. That stern injunction is valid still. It is an oft-repeated favourite of these authors. Then why bother to write yet another review on micelles, vesicles, microemulsions and emulsions and what more can usefully be said? The proper answer is that the sages of the Ettore Majorana Centre for Scientific Culture decreed no paper and no travel money. But on reflection there was some wisdom in that demand. That is precisely because there are enough articles on our subject to fill a large library, or two; and the technical literature is so very obstruse and scattered that to the uninitiated it really is almost impossible to extract any sense whatever. And in the end, since some better unity and perspective on the business of association colloids did indeed emerge, our obligation as privileged participants was to try to express that developing consensus.

Keywords

Chain Packing Micelle Size Counterion Binding Bicontinuous Structure Ionic Micelle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Selected References

  1. Mathematics and Physics of Disordered Media, U. Minnesota Institute of Mathematics and its Applications Publications 1; B. Hughes and B.W. Ninham (eds. ). Springer-Verlag publishers (1983).Google Scholar
  2. J.N. Israelachvili, D.J. Mitchell, and B.W. Ninham, Theory of Self-Assembly of Hydrocarbon Amphiphiles into Micelles and Bilayers, J.C.S., Faraday Transactions II 72: 1525 (1976).Google Scholar
  3. J.N. Israelachvili, D.J. Mitchell, and B.W. Ninham, Theory of Self-Assembly of Lipid Bilayers and Vesicles, Biochim. Biophys. Acta 470: 185 (1977).Google Scholar
  4. S.L. Carnie, D.Y.C. Chan, D.J. Mitchell, and B.W. Ninham, The Structure of Electrolytes at Charged Surfaces: The Primitive Model, J. Chem. Phys. 74: 1472 (1981).ADSGoogle Scholar
  5. B. Lindman and H. Wennerström, Micelles, Amphiphile Aggregation in Aqueous Solution, Topics in Current Chemistry 87: 1 (1980)Google Scholar
  6. Bengt Jönsson and H. Wennerström, J. Colloid Interface Sci. 80: 482 (1980).Google Scholar
  7. Bengt Jönsson and H. Wennerström, Phase Equilibria in a Three-Component Water- Soap- Alcohol System. A Thermodynamic Model, J.Phys.Chem. 91: 338 (1987).Google Scholar

Ion Binding and Chain Packing

  1. A. Wulf, cited in Mitchell and Ninham has reconciled the apparent contradiction between chain packing and a fluid-like core. D.W. Gruen, J. Colloid Interface Sci. 24: 281 (1981).Google Scholar
  2. D.W. Gruen and E.H.B. de Lacey, In: “Surfactants in Solution”, K.L. Mittal and B. Lindman, eds., Plenum Press, New York (1984), vol. 1, p. 279.Google Scholar
  3. D.W.R. Gruen, J. Phys. Chem. 89: 146 (1985).Google Scholar
  4. D.W.R. Gruen, Progr. Colloid Polymer Sci. 70: 6 (1985).Google Scholar
  5. G. Gunnarsson, Bengt Jönsson and H. Wennerström, Surfactant Association into Micelles. An Electrostatic Approach, J. Phys. Chem. 84: 3114 (1980)Google Scholar
  6. H. Wennerström, B. Jönsson and P. Linse, The Cell Model for Polyelectrolyte Systems. Exact Statistical Mechanical Calculations, Monte Carlo Simulation, and the Poisson-Boltzmann Approach, J. Phys. Chem. 76: 4665 (1982).Google Scholar
  7. D.F. Evans, D.J. Mitchell, and B.W. Ninham, Ion Binding and Dressed Micelles, J. Phys. Chem. 88: 6344 (1984).Google Scholar
  8. D.F. Evans and B.W. Ninham, Ion Binding and the Hydrophobic Effect, J. Phys. Chem. 87: 5025 (1983).Google Scholar
  9. B.W. Ninham, B.A. Pailthorpe, and D.W. Mitchell, Ion Solvent Interactions and the Activity Coefficients of Real Electrolyte Solutions, J.Chem. Soc. Faraday II 80: 115 (1984).Google Scholar
  10. D.J. Mitchell and B.W. Ninham, Range of the screened Coulomb Interaction in Electrolytes and Double Layer Problems, Chemical Physics Letters 53: 397 (1978)ADSGoogle Scholar
  11. B.W. Ninham, D.J. Mitchell, S. Mukherjee, and D.F. Evans, Surfactant Diffusion: New Results and Interpretations, J. Colloid Interface Sci. 93: 184 (1983).Google Scholar
  12. D.J. Mitchell, B.W. Ninham, and D.F. Evans, And again the Micelle Diffusion Coefficient, J. Colloid Interface Sci. 101: 292 (1984)Google Scholar
  13. Y. Talmon, D.F. Evans and B.W.: Ninham, Spontaneous Vesicles formed from Hydroxide Surfactants: Evidence from Electron Microscopy, Science 221: 1047 (1983).ADSGoogle Scholar
  14. B. Kachar, D.F. Evans, and B.W. Ninham, Rapid Characterization of Colloidal Systems by Video Enhanced Contrast Light Microscopy, J. Colloid Interface Sci. 99: 593 (1984).Google Scholar
  15. S. Hashimoto, J.K. Thomas, D.F. Evans, and B.W. Ninham, Unusual Behaviour of Hydroxide Surfactants, J. Colloid Interface Sci. 95: 594 (1983).Google Scholar
  16. J.E. Brady, D.F. Evans, B. Kachar, and B.W. Ninham, Spontaneous Vesicles, J. Am. Chem. Soc. 106: 4279 (1984).Google Scholar
  17. J. Brady, D. F. Evans, G. Warr, F. Gnessir, and B.W. Ninham, Counterion Specificity as a Determinant of Surfactant Aggregation, J. Phys. Chem. 90: 1853 (1986).Google Scholar
  18. B. Kachar, D.F. Evans, and B.W. Ninham, Video Enhanced Contrast Differential Interference Contrast Microscopy, J. Colloid Interface Sci. 100: 287 (1984).Google Scholar

Surface Tension and Microemulsion Droplet Models

  1. D.J. Mitchell and B.W. Ninham, Electrostatic Curvature Contributions to interfacial Tension of Micellar and Microemulsion Phases, J. Phys. Chem. 87: 2996 (1983).Google Scholar

Ionic Surfactant Micelles and Liquid Crystals

  1. B. Lindman, H. Wennerström, and O. Sderman, NMR Studies of Surfactant Systems, In: R. Zana, ed., “Surfactant Solutions. New Methods of Investigation”, Marcel Dekker, New York, 1987, p. 295.Google Scholar
  2. Lindman, and P. Stilbs, in vol. 12 (1983) and O. Söderman in vol. 14 (1985).Google Scholar

Phase Diagrams

  1. P. Ekwall, Adv. Liquid Cryst. 1: 1 (1975).Google Scholar
  2. P. Ekwall, L. Mandell, and K. Fontell, Mol. Cryst. Liq. Cryst. 8: 157 (1969).Google Scholar
  3. K. Fontell, Mol. Cryst. Liq Cryst. 63: 59 (1981)Google Scholar
  4. G.J.T. Tiddy, Surfactant-Water Liquid Crystal Phases, Phys. Rep. 57: 1 (1980).ADSGoogle Scholar

Divalent Couterion Systems

  1. A. Khan, K. Fontell, G. Lindblom, and B. Lindman, J. Phys. Chem. 86: 4266 (1982).Google Scholar
  2. A. Khan, K. Fontell, and B. Lindman, Colloids and Surfaces 11: 401 (1984).Google Scholar
  3. A. Khan, K. Fontell, and B. Lindman, J. Colloid Interface Sci. 101: 193 (1984).Google Scholar
  4. A. Khan, K. Fontell, and B. Lindman, Progr. Colloid and Polymer Sci. 70: 30 (1985).Google Scholar
  5. A. Khan, B. Jönsson and H. Wennerström, J. Phys. Chem. 89: 5180 (1985).Google Scholar

NMR Self-Diffusion Studies of Micellization, Solubilization and Micro-emulsions

  1. P. Stilbs and M.E. Moseley, Chem. Scr. 15: 176 (1980).Google Scholar
  2. P. Stilbs, J. Colloid Interface Sci. 87: 385 (1982).Google Scholar
  3. P. Stilbs, Progress NMR Spectroscopy, 19: 1 (1987).Google Scholar

Surfactant Self-Association

  1. H. Wennerström and B. Lindman, Micelles. Physical Chemistry of Surfactant Association. Physics Reports 52: 1 (1979).ADSGoogle Scholar
  2. P. Stilbs and B. Lindman, J.Phys. Chem. 85: 2587 (1981).Google Scholar
  3. B. Lindman, M.C. Puyal, N. Kamenka, R. Rymdén, and P. Stilbs, J. Phys. Chem. 88: 5048 (1984).Google Scholar
  4. B. Lindström, A. Khan, O. Söderman, N. Kamenka, and B. Landman, J. Phys. Chem. 89: 5313 (1985).Google Scholar
  5. N. Kamenka, G. Haouche, B. Faucompré, B. Brun, and B. Lindman, J. Colloid Interface Sci. 108: 451 (1985).Google Scholar
  6. N.J. Turro and A. Yekta, J. Amer. Chem. Soc. 100: 5951 (1978).Google Scholar
  7. M. Almgren and J.E. Löfroth, J. Colloid Interface Sci. 81: 486 (1980).Google Scholar
  8. P. Lianos and R. Zana, J. Phys. Chem. 84: 3339 (1980).Google Scholar
  9. E.A.G. Aniansson, S.N. Wall, M. Almgren, H. Hoffmann, I. Kielmann, W. Ulbricht, R. Zana, J. Lang, and C. Tondre, J. Phys. Chem. 80: 905 (1976).Google Scholar
  10. J. Ulmius and H. Wennerström, J. Magn. Resonance 28: 309 (1977)ADSGoogle Scholar
  11. P.J. Missel. N.A. Mazer, M.C. Carey, and G.B. Benedek, In: “Solution Behaviour of Surfactants”, K.L. Mittal and E.J. Fendler, eds., Plenum, New York (1982), vol. 1. p. 373.Google Scholar
  12. J. Ulmius, H. Wennerström, L.B.A. Johansson, G. Lindblom and S. Graysholt, J. Phys. Chem. 83: 2232 (1979).Google Scholar
  13. J. Ulmius, H. Wennerström, J. Magn. Resonance 28: 309 (1977).ADSGoogle Scholar
  14. U. Henriksson, R. Klason, L. Odberg, and J.C. Eriksson, Chem. Phys. Lett. 52: 554 (1977).ADSGoogle Scholar
  15. B. Jönsson, H. Wennerström, P.G. Nilsson, and P. Linse, Colloid Polymer Sci. 264: 77 (1986).Google Scholar
  16. B. Mely, J. Charvolin, and P. Keller, Chem. Phys. Lipids 15: 161 (1975).Google Scholar
  17. J.N. Davis, Biochim. Biophys. Acta 737: 117 (1983).Google Scholar
  18. J. Seelig, Quart. Rev. Biophys. 10: 353 (1977).Google Scholar
  19. H. Wennerström, B. Lindman, O. Sôderman, T. Drakenberg, and J. Rosenholm, J. Amer. Chem. Soc. 101: 6869 (1979).Google Scholar
  20. H. Walderhaug, O. Söderman, and P. Stilbs, J. Phys. Chem. 88: 1655 (1984).Google Scholar
  21. O. Söderman, and P. Stilbs, J. Phys. Chem. 88: 1655 (1984).Google Scholar
  22. O. Söderman, H. Walderhaug, U. Henriksson, and P. Stilbs, J. Phys. Chem. 89: 3693 (1985).Google Scholar
  23. H. Néry, O. Söderman, D. Canet, H. Walderhaug, and B. Lindman, J. Phys. Chem. 90: 580 (1986).Google Scholar
  24. H. Wennerström, G. Lindblom, and B. Lindman, Chem. Scr. 6: 97 (1974).Google Scholar
  25. B. Halle and H. Wennerström, J. Chem. Phys. 75: 1928 (1981).ADSGoogle Scholar
  26. H. Gustaysson and B. Lindman, J. Amer. Chem. Soc. 100: 4647 (1978).Google Scholar
  27. H. Wennerström, B. Lindman, S. Engström, O. Söderman, G. Lindblom, and G.J.T. Tiddy, In: “Magnetic Resonance in Colloid and Interface Science”, J.P. Fraissard and H.A. Resing, eds., Reidel, New York (1980), p. 609.Google Scholar
  28. B. Lindman, In: “NMR of Newly Accessible Nuclei”, P. Laszlo, ed., Academic Press, New York (1983), vol. 1, p. 193.Google Scholar
  29. G. Lindblom, B. Lindman, and G.J.T. Tiddy, J. Amer. Chem. Soc. 100: 2299 (1978).Google Scholar
  30. H. Fabre, N. Kamenka, A. Khan, G. Lindblom, B. Lindman, and G.J. Tiddy, J. Phys. Chem. 84: 3428 (1980).Google Scholar

Hydration

  1. B. Lindman, H. Wennerström, H. Gustaysson, N. Kamenka, and B. Brun, Pure Applied Chem. 52: 1307 (1980).Google Scholar
  2. B. Halle and G. Carlström, J. Phys. Chem. 85: 2142 (1981).Google Scholar
  3. N.O. Persson and B. Lindman, J. Phys. Chem. 79: 1410 (1975).Google Scholar
  4. H. Wennerström, N.O. Persson, and B. Lindman, Am. Chem. Soc. Symp. Ser. 9: 253 (1975).Google Scholar

Nonionic micelles

  1. D.J. Mitchell, G.J.T. Tiddy, L. Waring, T. Bostock, and M.P. McDonald, J. Chem. Soc. Faraday 1, 79: 975 (1983).Google Scholar
  2. P.G. Nilsson, H. Wennerström, and B. Lindman, J. Phys. Chem. 87: 1377 (1983).Google Scholar
  3. P.G. Nilsson and B. Lindman, J. Phys. Chem. 87: 4756 (1983).Google Scholar
  4. P.G. Nilsson and B. Lindman, J. Phys. Chem. 88: 4764 (1984).Google Scholar
  5. P.G. Nilsson and B. Lindman, J.Phys. Chem. 88: 5391 (1984).Google Scholar
  6. P.G. Nilsson and B. Lindman, J. Phys. Chem. 86: 27 (1982).Google Scholar
  7. P.G. Nilsson, H. Wennerström, and B. Lindman, Chem. Scr. 25: 67 (1985).Google Scholar
  8. A. Malliaris, J. LeMoigne, J. Sturm, and R. Zana, J. Phys. Chem. 89: 2709 (1985).Google Scholar
  9. J.E. Löfroth and M. Almgren, In: “Surfactants in Solution”, K.L. Mittal and B. Lindman, eds., Plenum, New York (1984), vol. 1, p. 627.Google Scholar
  10. G.G. Warr, Thesis, Melbourne (1985).Google Scholar

Structure and Dynamics of Microemulsions

  1. B. Lindman and P. Stilbs, Molecular Diffusion in Microemulsions, In: “Microemulsions”, S. Friberg and P. Bothorel, eds., CRC Boca Ralon F1, 1987, p. 119Google Scholar
  2. P. Stilbs and B. Lindman, J. Colloid Interface Sci. 99: 290 (1984).Google Scholar
  3. F.D. Blum. S. Pickup, B.W. Ninham, S.J. Chen, and D.F. Evans, J. Phys. Chem. 89: 711 (1985).Google Scholar
  4. K. Fontell, A. Ceglie, B. Lindman, and B.W. Ninham, Acta. Chem. Scand. A49: 241 (1986).Google Scholar
  5. B. Lindman, N. Kamenka, T.M. Kathopoulis, B. Brun, and P.G. Nilsson, J. Phys. Chem. 84: 2485 (1980).Google Scholar
  6. B. Lindman, P. Stilbs, and M.E. Moseley, J. Colloid Interface Sci. 83: 569 (1981).Google Scholar
  7. P. Stilbs and B. Lindman, Progress Colloid and Polymer Sci. 69: 391 (1984).Google Scholar
  8. B. Lindman, T. Ahlnäs, O. Söderman, H. Walderhaug, K. Rapacki, and P. Stilbs, Faraday Disc. Chem. Soc. 76: 317 (1983).Google Scholar
  9. P. Stilbs, K. Rapacki, and B. Lindman, J. Colloid Interface Sci. 95: 583 (1983).Google Scholar
  10. P. Guéring and B. Lindman, Langmuir 1: 464 (1985).Google Scholar
  11. B. Lindman, T. Ahlnäs, O. Söderman, H. Walderhaug, J. Rapacki, and P. Stilbs, Faraday Disc. Chem. Soc. 76: 317 (1983).Google Scholar
  12. O. Söderman and H. Walderhaug, Langmuir, 2: 57 (1986).Google Scholar
  13. K. Shinoda, H. Kunieda, T. Arai, and H. Saijo, Principles of Attaining Very Large Solubilization (Microemulsion): Inclusive Understanding of the Solubilization of Oil and Water in Aqueous and Hydrocarbon Media, J. Phys. Chem. 88: 5126 (1984).Google Scholar
  14. K. Shinoda, The Significance and Characteristics of Organized Solutions, J. Phys. Chem. 89: 2429 (1985).Google Scholar
  15. K. Shinoda, Solution Behaviour of Surfactants: The Importance of Surfactant Phase and the Continuous Change in HLB of Surfactant, Progress in Colloid and Polymer Sci. 68: 1 (1983).Google Scholar

Microemulsions with Double-chained Surfactants

  1. L.R. Angel, D.F. Evans, and B.W. Ninham, Three Component Ionic Micro-emulsions, J. Phys. Chem. 87: 538 (1983).Google Scholar
  2. S.J. Chen, D.F. Evans, and B.W. Ninham, Properties and Structure of Three Component Ionic Microemulsions, J. Phys. Chem. 87: 538 (1983).Google Scholar
  3. B.W. Ninham, D.F. Evans, and S.J. Chen, Role of Oils and Other Factors in Microemulsion Design, J. Phys. Chem. 88: 5855 (1984).Google Scholar
  4. F.D. Blum, S. Pickup, B.W. Ninham, S.J. Chen, and D.F. Evans, Structure and Dynamics in Three Component Microemulsion, J.Phys. Chem. 89: 711 (1985).Google Scholar
  5. S.J. Chen, D.F. Evans, B.W. Ninham, D.J. Mitchell, F.D. Blum, and S. Pickup, Curvature as a Determinant Microstructure in Microemulsions, J. Phys. Chem. 90: 842 (1986).Google Scholar
  6. D.F. Evans, D.J. Mithcell, and B.W. Ninham, Oil, Water and Surfactant. Properties and Conjectured Structure of Simple Microemulsions, J. Phys. Chem. (Feature article) 90: 2817 (1986).Google Scholar
  7. K. Fontell, A. Ceglie, B. Lindman, and B.W. Ninham, Acta Chem. Scand. A49: 247 (1986).Google Scholar
  8. (1).
    See also J. Marra and J.N. Israelachvili, Biochemistry 24: 4608 (1985).Google Scholar
  9. (2).
    P. Claesson, R. Kjellander, P. Stenius and H. Christenson, J.C.S. Faraday 182: 2935 (1986).Google Scholar
  10. (3).
    J. Marra, J. Phys. Chem. 90: 2145 (1986).Google Scholar
  11. (4).
    R.M. Pashley, P. McGuiggan, B.W. Ninham, D.F. Evans, Attractive Forces between Unchanged Hydrophobic Surfaces: Direct Measurements in Aqueous Solution. Science 229: 1088 (1985).ADSGoogle Scholar
  12. (5).
  13. (6).
    R.M. Pashley, P.M. McGuiggan, B.W. Ninham, D.F. Evans, and J. Brady, Direct Measurements of Surface Forces between Bilayers of Double-chained Quaternary Ammonium Acetate and Bromide Surfactant, J. Phys. Chem. (1986). 90: 1637.Google Scholar
  14. (7).
    R.M. Pashley, P.M. McGuiggan, B.W. Ninham, D.F. Evans, and J. Brady, Direct Measurements of Surface Forces between Bilayers of Double-chained Quaternary Ammonium Acetate and Bromide Surfactant, J. Phys. Chem. (1986). 90: 1637.Google Scholar
  15. B. Jönsson, P. Linse, and T. Akesson, Breakdown of the Poisson-Boltzmann Approximation in Polyelectrolyte Systems: A Monte Carlo Simulation STudy, In: “Surfactants in Solution”, K.L. Mittal and B. Lindman, eds., Plenum, New York (1984), p. 20–23.Google Scholar
  16. L. Guldbrand, B. Jönsson, H. Wennerström, and P. Linse, Electrical Double Layer Forces. A Monte Carlo Study, J. Chem. Phys. 80: 2221 (1984).ADSGoogle Scholar
  17. B. Svensson and B. Jönsson, The Interaction between Charged Aggregates in Electrolyge Solution. A Monte Carlo Simulation Study, Chem. Phys. Letters 108: 580 (1984).ADSGoogle Scholar
  18. R. Kjellander and S. Marcelja, Inhomogeneous Coulomb Fluids with Image Interactions between Planar Surfaces. I, J. Chem. Phys. 82: 2122 (1985).ADSGoogle Scholar
  19. R. Kjellander and S. Marcelja, Correlation and Image Charge Effects in Electric Double Layers, Chem. Phys. Letters, 112: 49 (1984).ADSGoogle Scholar

Conclusions

  1. R.B. Ashman and B.W. Ninham, Immunosuppression Induced by Cationic Surfactants, Molec. Immunology 22: 609 (1985).Google Scholar
  2. R.B. Ashman, R.V. Blanden, B.W. Ninham, and D.F. Evans, A Role for Surface Chemistry in Immunology, Immunology Today, (to appear).Google Scholar
  3. D.F. Evans and B.W. Ninham, Molecular Forces in the Self-Organization of Amphiphiles, J. Phys. Chem. 90: 2817 (1986).Google Scholar

Copyright information

© Springer Science+Business Media New York 1989

Authors and Affiliations

  • B. Lindman
    • 1
  • B. Ninham
    • 2
  1. 1.Physical Chemistry, 1, Chemical CenterUniversity of LundLundSweden
  2. 2.Department of Applied MathematicsThe Australian National UniversityCanberraAustralia

Personalised recommendations