Skip to main content

Phase Behavior and Structure of Microemulsions

  • Chapter
Progress in Microemulsions

Part of the book series: Ettore Majorana International Science Series ((EMISS,volume 41))

Abstract

Various pathways can be employed to prepare microemulsions. One of them starts from micellar solutions. Surfactants dissolved in water form, above the critical micelle concentration, a large number of micelles. Hydrocarbon molecules, though sparingly soluble in water, can be solubilized in the hydrophobic core of the micellar aggregates. The solubilized molecules are usually located among the hydrocarbon tails of the micelles. For some surfactants or, more generally, when a medium chain length alcohol (a cosurfactant) is also present, the solubilized molecules can form a core covered by a layer of surfactant and alcohol molecules. Of course, some hydrocarbon molecules and part of such molecules remain located among the hydrocarbon tails of the interfacial layer of surfactant and cosurfactant. A dispersion containing the latter kind of microstructures is called a microemulsion. Micellar aggregates as well as solubilized micellar aggregates containing hydrocarbon molecules among the hydrocarbon tails of the surfactant molecules are thermodynamically stable. This suggests, by extrapolation, that the microemulsions can also constitute thermodynamically stable dispersions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. J. W. Verwey and J. Th, G. Overbeek, “Theory of the Stability of Lyophobic Colloids,” Elsevier, Amsterdam (1948).

    Google Scholar 

  2. E. Ruckenstein, Chem.Phys.Lett. 56: 518 (1978).

    Google Scholar 

  3. T. P. Hoar and J. H. Schulman, Nature 152: 102 (1943).

    Article  ADS  Google Scholar 

  4. J. H. Schulman and D. R. Riley, J.Colloid Sci. 3: 383 (1948).

    Article  Google Scholar 

  5. W. Stoeckenius, J. H. Schulman, and L. M. Prince, Kolloid Z. 169: 170 (1960).

    Article  Google Scholar 

  6. J. E. L. Bowcott and J. H. Schulman, Z. Electrochem. 59: 283 (1955).

    Google Scholar 

  7. J. W. Falco, R. D. Walker Jr., and D. O. Shah, AIChEJ. 20: 510 (1974).

    Article  Google Scholar 

  8. R. Hwan, C. A. Miller, and T. Fort, J.Colloid Interface Sci. 68: 221 (1979).

    Article  Google Scholar 

  9. A. M. Cazabat, D. Langevin, J. Meunier, and A. Pouchelon, Adv.Colloid Interface Sci. 16: 175 (1982).

    Article  Google Scholar 

  10. P. A. Winsor, “Solvent Properties of Amphiphilic Compounds,” Butterworth, London (1954).

    Google Scholar 

  11. R. N. Healy, R. L. Reed, and D. G. Stenmark, Soc.Pet.Eng.J.Trans.AIME 261: 147 (1976).

    Google Scholar 

  12. M. Bourel, C. Koukounis, R. Schechter, and W. Wade, J.Dispersion Sci.Tech. 1: 13 (1980).

    Article  Google Scholar 

  13. B. Lindman, P. Stilbs, and E. Moseley, J.Colloid Interface Sci. 83: 569 (1981).

    Article  Google Scholar 

  14. E. Ruckenstein, Chem.Phys.Lett. 98: 573 (1983).

    Article  ADS  Google Scholar 

  15. E. Ruckenstein, Fluid Phase Equilibria 20: 189 (1985).

    Article  Google Scholar 

  16. E. Ruckenstein, in: “Macro and Microemulsions,” D.O. Shah, ed., ACS Symposium Series No. 272:21 (1985).

    Google Scholar 

  17. J. W. Gibbs, “Collected Works,” Vol. 1, Yale University Press, New Haven, CT (1948).

    MATH  Google Scholar 

  18. F. R. Buff, J.Chem.Physics 19: 159 (1951).

    Article  MathSciNet  Google Scholar 

  19. S. Ono and S. Kondo, in: “Handbuch der Physik,” Vol. X, p. 134, S. Flugge, ed., Springer, Berlin (1960).

    Google Scholar 

  20. E. Ruckenstein and J. C. Chi, J.C.S. Faraday II 71: 1690 (1975).

    Article  Google Scholar 

  21. J. Th., G. Overbeek, Faraday Discussions of the Chem.Soc. 65: 7 (1978).

    Article  Google Scholar 

  22. E. Ruckenstein and I. V. Rao (to be published).

    Google Scholar 

  23. W. Helfrich, Z.Naturforsch. 28c: 693 (1973).

    MathSciNet  Google Scholar 

  24. S. A. Safran, L. A. Turkevick, and P. A. Princus, J.Phys.(Paris) 45: L69 (1984).

    Article  Google Scholar 

  25. S. A. Safran, J.Chem.Phys. 78: 2073 (1983).

    Article  ADS  Google Scholar 

  26. E. Ruckenstein, Soc.Pet.Eng.J.Trans.AIME 21a: 593 (1981).

    Google Scholar 

  27. A. Pouchelon, J. Meunier, D. Langevin, D. Chatenay, and A. M. Cazabat, Chem.Phys.Lett. 76: 277 (1980).

    Article  ADS  Google Scholar 

  28. G. I. Sivashinsky and D. M. Michelson, Prog.Theor.Phys. 63: 2112 (1980).

    Article  ADS  Google Scholar 

  29. T. Shlang and G. I. Sivashinsky, J.Physique 43: 459 (1982).

    Article  Google Scholar 

  30. S. Marcelja and N. Radie, Chem.Phys.Lett. 42: 129 (1976).

    Article  ADS  Google Scholar 

  31. E. Ruckenstein and D. Schiby, Chem.Phys.Lett. 95: 439 (1983).

    Article  ADS  Google Scholar 

  32. E. Ruckenstein and D. Schiby, Langmuir 1: 612 (1985).

    Article  Google Scholar 

  33. H. M. Princen, M. P. Aronson, and G. C. Moser, J. Colloid Interface Sci. 75: 246 (1980).

    Article  Google Scholar 

  34. M. A. Schwartz, “Gesammelte Mathematische Abhandlung,” Vol. 1, Springer, Berlin (1890).

    Book  Google Scholar 

  35. E. R. Neovius, “Minimalflächen”, J. C. Frenkel, Helsingfors, (1883).

    Google Scholar 

  36. L. E. Scriven, In: “Micellization, Solubilization and Microemulsions,” K. L. Mittal, ed., Plenum Press, New York (1977).

    Google Scholar 

  37. Y. Talmon and S. Prager, J.Chem.Phys. 69: 2984 (1978).

    Article  ADS  Google Scholar 

  38. J. Jouffroy, P. Levinson, and P. G. de Gennes, J.Physique 43: 1241 (1982).

    Article  Google Scholar 

  39. E. L. Mackor and J. H. van der Waals, J.Colloid Sci. 7: 535 (1952).

    Article  Google Scholar 

  40. S. G. Ash, D. H. Everett, and C. Radke, J.C.S. Faraday II 69: 1256 (1973).

    Article  Google Scholar 

  41. A. Vrij, F. Hesselink, J. Lucassen, and M. van den Tempel, Proc.Kon.Ned.Akad.Wet. B13: 124 (1970).

    Google Scholar 

  42. E. Ruckenstein and R. K. Jain, J.C.S. Faraday II. 70: 132 (1974).

    Article  Google Scholar 

  43. C. Maldarelli, R. K. Jain, I. B. Ivanov, and E. Ruckenstein, J.Colloid Interface Sci., 18: 118 (1980).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ruckenstein, E. (1989). Phase Behavior and Structure of Microemulsions. In: Martellucci, S., Chester, A.N. (eds) Progress in Microemulsions. Ettore Majorana International Science Series, vol 41. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0809-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0809-4_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-0811-7

  • Online ISBN: 978-1-4899-0809-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics