Phase Behavior and Structure of Microemulsions

  • E. Ruckenstein
Part of the Ettore Majorana International Science Series book series (EMISS, volume 41)


Various pathways can be employed to prepare microemulsions. One of them starts from micellar solutions. Surfactants dissolved in water form, above the critical micelle concentration, a large number of micelles. Hydrocarbon molecules, though sparingly soluble in water, can be solubilized in the hydrophobic core of the micellar aggregates. The solubilized molecules are usually located among the hydrocarbon tails of the micelles. For some surfactants or, more generally, when a medium chain length alcohol (a cosurfactant) is also present, the solubilized molecules can form a core covered by a layer of surfactant and alcohol molecules. Of course, some hydrocarbon molecules and part of such molecules remain located among the hydrocarbon tails of the interfacial layer of surfactant and cosurfactant. A dispersion containing the latter kind of microstructures is called a microemulsion. Micellar aggregates as well as solubilized micellar aggregates containing hydrocarbon molecules among the hydrocarbon tails of the surfactant molecules are thermodynamically stable. This suggests, by extrapolation, that the microemulsions can also constitute thermodynamically stable dispersions.


Interfacial Tension Middle Phase Internal Interface Excess Phasis Micellar Aggregate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. J. W. Verwey and J. Th, G. Overbeek, “Theory of the Stability of Lyophobic Colloids,” Elsevier, Amsterdam (1948).Google Scholar
  2. 2.
    E. Ruckenstein, Chem.Phys.Lett. 56: 518 (1978).Google Scholar
  3. 3.
    T. P. Hoar and J. H. Schulman, Nature 152: 102 (1943).ADSCrossRefGoogle Scholar
  4. 4.
    J. H. Schulman and D. R. Riley, J.Colloid Sci. 3: 383 (1948).CrossRefGoogle Scholar
  5. 5.
    W. Stoeckenius, J. H. Schulman, and L. M. Prince, Kolloid Z. 169: 170 (1960).CrossRefGoogle Scholar
  6. 6.
    J. E. L. Bowcott and J. H. Schulman, Z. Electrochem. 59: 283 (1955).Google Scholar
  7. 7.
    J. W. Falco, R. D. Walker Jr., and D. O. Shah, AIChEJ. 20: 510 (1974).CrossRefGoogle Scholar
  8. 8.
    R. Hwan, C. A. Miller, and T. Fort, J.Colloid Interface Sci. 68: 221 (1979).CrossRefGoogle Scholar
  9. 9.
    A. M. Cazabat, D. Langevin, J. Meunier, and A. Pouchelon, Adv.Colloid Interface Sci. 16: 175 (1982).CrossRefGoogle Scholar
  10. 10.
    P. A. Winsor, “Solvent Properties of Amphiphilic Compounds,” Butterworth, London (1954).Google Scholar
  11. 11.
    R. N. Healy, R. L. Reed, and D. G. Stenmark, Soc.Pet.Eng.J.Trans.AIME 261: 147 (1976).Google Scholar
  12. 12.
    M. Bourel, C. Koukounis, R. Schechter, and W. Wade, J.Dispersion Sci.Tech. 1: 13 (1980).CrossRefGoogle Scholar
  13. 13.
    B. Lindman, P. Stilbs, and E. Moseley, J.Colloid Interface Sci. 83: 569 (1981).CrossRefGoogle Scholar
  14. 14.
    E. Ruckenstein, Chem.Phys.Lett. 98: 573 (1983).ADSCrossRefGoogle Scholar
  15. 15.
    E. Ruckenstein, Fluid Phase Equilibria 20: 189 (1985).CrossRefGoogle Scholar
  16. 16.
    E. Ruckenstein, in: “Macro and Microemulsions,” D.O. Shah, ed., ACS Symposium Series No. 272:21 (1985).Google Scholar
  17. 17.
    J. W. Gibbs, “Collected Works,” Vol. 1, Yale University Press, New Haven, CT (1948).zbMATHGoogle Scholar
  18. 18.
    F. R. Buff, J.Chem.Physics 19: 159 (1951).MathSciNetCrossRefGoogle Scholar
  19. 19.
    S. Ono and S. Kondo, in: “Handbuch der Physik,” Vol. X, p. 134, S. Flugge, ed., Springer, Berlin (1960).Google Scholar
  20. 20.
    E. Ruckenstein and J. C. Chi, J.C.S. Faraday II 71: 1690 (1975).CrossRefGoogle Scholar
  21. 21.
    J. Th., G. Overbeek, Faraday Discussions of the Chem.Soc. 65: 7 (1978).CrossRefGoogle Scholar
  22. 22.
    E. Ruckenstein and I. V. Rao (to be published).Google Scholar
  23. 23.
    W. Helfrich, Z.Naturforsch. 28c: 693 (1973).MathSciNetGoogle Scholar
  24. 24.
    S. A. Safran, L. A. Turkevick, and P. A. Princus, J.Phys.(Paris) 45: L69 (1984).CrossRefGoogle Scholar
  25. 25.
    S. A. Safran, J.Chem.Phys. 78: 2073 (1983).ADSCrossRefGoogle Scholar
  26. 26.
    E. Ruckenstein, Soc.Pet.Eng.J.Trans.AIME 21a: 593 (1981).Google Scholar
  27. 27.
    A. Pouchelon, J. Meunier, D. Langevin, D. Chatenay, and A. M. Cazabat, Chem.Phys.Lett. 76: 277 (1980).ADSCrossRefGoogle Scholar
  28. 28.
    G. I. Sivashinsky and D. M. Michelson, Prog.Theor.Phys. 63: 2112 (1980).ADSCrossRefGoogle Scholar
  29. 29.
    T. Shlang and G. I. Sivashinsky, J.Physique 43: 459 (1982).CrossRefGoogle Scholar
  30. 30.
    S. Marcelja and N. Radie, Chem.Phys.Lett. 42: 129 (1976).ADSCrossRefGoogle Scholar
  31. 31.
    E. Ruckenstein and D. Schiby, Chem.Phys.Lett. 95: 439 (1983).ADSCrossRefGoogle Scholar
  32. 32.
    E. Ruckenstein and D. Schiby, Langmuir 1: 612 (1985).CrossRefGoogle Scholar
  33. 33.
    H. M. Princen, M. P. Aronson, and G. C. Moser, J. Colloid Interface Sci. 75: 246 (1980).CrossRefGoogle Scholar
  34. 34.
    M. A. Schwartz, “Gesammelte Mathematische Abhandlung,” Vol. 1, Springer, Berlin (1890).CrossRefGoogle Scholar
  35. 35.
    E. R. Neovius, “Minimalflächen”, J. C. Frenkel, Helsingfors, (1883).Google Scholar
  36. 36.
    L. E. Scriven, In: “Micellization, Solubilization and Microemulsions,” K. L. Mittal, ed., Plenum Press, New York (1977).Google Scholar
  37. 37.
    Y. Talmon and S. Prager, J.Chem.Phys. 69: 2984 (1978).ADSCrossRefGoogle Scholar
  38. 38.
    J. Jouffroy, P. Levinson, and P. G. de Gennes, J.Physique 43: 1241 (1982).CrossRefGoogle Scholar
  39. 39.
    E. L. Mackor and J. H. van der Waals, J.Colloid Sci. 7: 535 (1952).CrossRefGoogle Scholar
  40. 40.
    S. G. Ash, D. H. Everett, and C. Radke, J.C.S. Faraday II 69: 1256 (1973).CrossRefGoogle Scholar
  41. 41.
    A. Vrij, F. Hesselink, J. Lucassen, and M. van den Tempel, Proc.Kon.Ned.Akad.Wet. B13: 124 (1970).Google Scholar
  42. 42.
    E. Ruckenstein and R. K. Jain, J.C.S. Faraday II. 70: 132 (1974).CrossRefGoogle Scholar
  43. 43.
    C. Maldarelli, R. K. Jain, I. B. Ivanov, and E. Ruckenstein, J.Colloid Interface Sci., 18: 118 (1980).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1989

Authors and Affiliations

  • E. Ruckenstein
    • 1
  1. 1.Institut für Physikalische Chemie IUniversität BayreuthBayreuthWest-Germany

Personalised recommendations