Skip to main content

Mathematical Models for Energy Propagation in the Optical Scatter Channel

  • Chapter
Optical Channels

Part of the book series: Applications of Communications Theory ((ACTH))

  • 204 Accesses

Abstract

With the basic composition of the optical scatter channel defined in Chapter 6, we can now turn to how this information is used to quantify radiance and irradiance propagation in that medium. Unfortunately, the extensive amount of material currently available on the subject prohibits our being complete and all-inclusive in one chapter of a book. Therefore, we shall limit our discussions to those mathematical approaches and results which have found, and still find, great utility in optical communication systems analysis. We will begin the chapter with a formulation of the mutual coherence function for multiple-forward-scatter media, as derived by Lutomirski.(1) This development will be discussed in terms of its physical implications and also its validity in predicting real-life phenomena. The discussion will then move into a radiative transfer analysis of energy transport in particulate media, and the basic limitations of the closed-formed solutions derived by the small-angle scattering/Huygens-Fresnel approximations will be considered. The conclusion one draws at this point is that the aforementioned techniques can provide insight and answers to optical propagation problems if used properly, but can give misleading results if not. Other mathematical techniques can then be employed if one expects channel characterizations outside the validity range of these closed-form solution sets. Some of the more useful analytical methods of this type will be highlighted and discussed. The result of this discussion will be an in-depth look at two Monte Carlo-based analyses which provide function sets of engineering equations for general atmospheric and marine communication system performance assessments. The next section of this chapter will describe three mathematical techniques which can be applied to energy transfer through the air/sea interface. The final section of this chapter will illustrate how these propagation models can be integrated to yield a total picture of radiation transport in the optical scatter channel. Throughout the chapter, comparisons between model predictions and experimental data will be made whenever possible.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. F. Lutomirski, Atmospheric degradation of electro-optical system performance, Appl. Opt. 17, 3915–3921 (1978).

    Article  Google Scholar 

  2. R. L. Fante, Electromagnetic beam propagation in turbulent media, Proc. IEEE 63, 1669–1662 (1975).

    Article  Google Scholar 

  3. S. Karp, Optical communications between underwater and above-surface (satellite) terminals, IEEE Trans. Commun. COM-24, 66–81 (1976).

    Google Scholar 

  4. A. Ishimaru, Theory and application of wave propagation and scattering in random media, Proc. IEEE 68, 1030–1061 (1977).

    Article  Google Scholar 

  5. L. B. Stotts and P. J. Titterton, Link Models for Space/Air-to-Subsurface Optical Communications Analysis, International Telemetering Conference, ITC/USA/80, San Diego, California, October 14–16, 1980.

    Google Scholar 

  6. R. L. Fante, Electromagnetic beam propagation in turbulent media: an update, Proc. IEEE 68, 1424–1443 (1980).

    Article  Google Scholar 

  7. R. L. Lutomirski and D. E. Snead, Green’s Function Calculation of the Effects of the Air/Sea Interface on Optical Propagation, in: Special Topics in Optical Propagation, AGARD Conference Proceedings No. 300, pp. 3–1–3–8, Technical Editing and Reproduction Ltd., London (1981).

    Google Scholar 

  8. S. Chandrasekhar, Radiative Transfer,Clarendon, Oxford (1960) [Reprinted by Dover Books, New York (1960)].

    Google Scholar 

  9. R. W. Preisendorfer, Hydrologic Optics, U.S. Department of Commerce, National Oceanic and Atmospheric Administration, Environmental Research Laboratories (1976).

    Google Scholar 

  10. R. W. Preisendorfer, Radiative Transfer on Discrete Spaces, Pergamon Press, New York (1965).

    Google Scholar 

  11. H. C. Van de Hulst, Multiple Light Scattering, Vol. 1, Acadmic Press, New York (1980).

    Google Scholar 

  12. A. Ishimaru, Wave Propagation and Scattering in Random Media, Vols. 1 and 2, Academic Press, New York (1978).

    Google Scholar 

  13. N. G. Jerlov and E. S. Nielsen (eds.), Optical Aspects of Oceanography, Academic Press, New York (1974).

    Google Scholar 

  14. N. G. Jerlov, Marine Optics, Elsevier Oceanography Series No. 14, Elsevier, Amsterdam (1976).

    Google Scholar 

  15. Naval Blue-Green Single-Pulse Downlink Propagation Model, Naval Ocean Systems Center, San Diego, California, Technical Report 387 (January 1, 1979 ).

    Google Scholar 

  16. R. L. Fante, Wave propagation in random media: a systems approach, in: Progress in Optics (E. Wolf, ed.), Vol. XXII, Chapter 6, Elsevier (in preparation).

    Google Scholar 

  17. R. F. Lutomirski and H. T. Yura, Propagation of a finite optical beam in an inhomogeneous medium, Appl. Opt. 10, 1654 (1971).

    Google Scholar 

  18. l8. D. A. de Wolf, Coherence of a light through an optically dense tubid layer, Appl. Opt. 17, 1280–1285 (1978).

    Article  Google Scholar 

  19. H. T. Yura, A Multiple Scattering Analysis of the Propagation of Radiance through the Atmosphere, URSI Commission F-sponsored Conference on Propagation in Non-ionized Media, La Baule, France (1977).

    Google Scholar 

  20. R. M. Gagliardi and S. Karp, Optical Communications, Wiley-Interscience, New York (1976).

    Google Scholar 

  21. W. H. Wells, Loss of resolution in water as a result of multiple small-angle scattering, J. Opt. Soc. Am. 59, 686 (1969).

    Article  Google Scholar 

  22. D. Arnush, Underwater light-beam propagation in the small-angle scattering approximation, J. Opt. Soc. Am. 62, 1109 (1972).

    Article  Google Scholar 

  23. R. L. Fante, Propagation of electromagnetic waves through turbulent plasma using transport theory, IEEE Trans. Antennas Propagat. AP-21, 750–755 (1973).

    Google Scholar 

  24. R. F. Lutomirski, The Irradiance Distribution in a Scattering Medium, Pacific Sierra Research Corporation, PSR Note 73 (May, 1975 ).

    Google Scholar 

  25. H. T. Yura, Aerospace Corporation, private communications.

    Google Scholar 

  26. D. M. Bravo-Zhivotovsky, L. S. Dolin, A. G. Luchmin, and V. A. Sarelyev, Structure of a narrow light beam in sea water, Atmos. Oceanic Phys. 5, 160–167 (1969)

    Google Scholar 

  27. P. Y. Ganich and I. M. Levin, Extinction of the brightness of self-luminous objects in a scattering medium, Bull. Acad. Sci. (USSR), Atmos. Oceanic Phys. 4, (1968).

    Google Scholar 

  28. S. Karp, Optical Communications between Underwater and Above-Surface (Satellite) Terminals, Naval Electronics Laboratory Center Technical Document, unclassified, TD 430 (June 1, 1975 ).

    Google Scholar 

  29. S. Q. Duntley, Underwater Lighting by Submerged Lasers, Visibility Laboratory, Scripps Institute of Oceanography Technical Report, SIO REF 71–1 (June 1, 1971 ).

    Google Scholar 

  30. R. G. Driscoll, J. N. Martin, and S. Karp, OPSATCOM Field Measurements, Naval Electronics Laboratory Center Technical Document, unclassified, TD490 (June 1, 1976 ).

    Google Scholar 

  31. R. D. Anderson and L. B. Stotts, Underwater measurements between off-axis radiance compared with various analytical treatments of the radiative transfer equation, J. Opt. Soc. Am. 72, 738–746 (1982).

    Article  Google Scholar 

  32. W. G. Tam and A. Zardecki, Laser beam propagation in particulate media, J. Opt. Soc. Am. 69, 68 (1979).

    Article  Google Scholar 

  33. L. B. Stotts, Limitations of approximate Fourier techniques in solving radiative transfer problems, J. Opt. Soc. Am. 69, 1719 (1979).

    Article  Google Scholar 

  34. R. L. Fante, Range of validity of the quadratic approximation for propagation through a random distribution of large aerosol particles, Appl. Opt. 21, 9–11 (1982).

    Article  Google Scholar 

  35. R. P. Bocker, Naval Ocean Systems Center, private communication.

    Google Scholar 

  36. S. L. Valley (ed.), Handbook of Geophysics and Space Environments, McGraw-Hill, New York, Chapter 7, Table 7–4, pp. 7–23 (1965).

    Google Scholar 

  37. A. J. LaRocca, Atmospheric absorption, in: The Infrared Handbook ( W. L. Wolfe and G. J. Zissis, eds.), The Environmental Institute of Michigan, Ann Arbor (1978).

    Google Scholar 

  38. W. K. Pratt, Laser Communications,John Wiley and Sons, New York.

    Google Scholar 

  39. A. Deepak (ed.), Inversion Methods in Atmospheric Remote Sounding, Academic Press, New York (1977).

    Google Scholar 

  40. J. Lenoble, Standard Procedures to Compute Atmospheric Radiative Transfer in a Scattering Atmosphere, International Association of Meteorology and Atmospheric Physics (IAMAP), Radiation Commission, National Center for Atmospheric Research, Boulder, Colorado (July, 1977 ).

    Google Scholar 

  41. S. A. W. Gerstl and A. Zardecki, Discrete-ordinates finite-element method for atmospheric radiative transfer and remote sensing, Appl. Opt. 24, 81–93 (1985).

    Article  Google Scholar 

  42. A. Zardecki, S. A. W. Gerstl, and J. F. Embury, Application of the 2-D discrete-ordinate method to multiple scattering of laser radiation, Appl. Opt. 22, 1346–1353 (1983).

    Article  Google Scholar 

  43. G. N. Plass, G. W. Kattawar, and F. E. Catchings, Matrix operator theory of radiative transfer; Part 1, Rayleigh scattering, Appl. Opt. 12, 314–329 (1973).

    Article  Google Scholar 

  44. R. M. Lerner and J. D. Summers, Monte Carlo description of time-and space-resolved multiple forward scatter in natural water, Appl. Opt. 21, 861–869 (1982).

    Article  Google Scholar 

  45. G. W. Kattawar, Monte Carlo methods in radiative transfer, in: Multiple Light Scattering in Atmospheres, Oceans, Clouds and Snow, Institute for Atmospheric Optics and Remote Sensing, Short course No. 420, Williamsburg, Virginia, December 4–8, 1978.

    Google Scholar 

  46. H. R. Gordon, O. B. Brown, and M. M. Jacobs, Computed relationships between the inherent and apparent optical properties of a flat homogeneous ocean, Appl. Opt. 29, 417–427 (1976).

    Google Scholar 

  47. G. N. Plass and G. W. Kattawar, Monte Carlo calculations of radiative transfer in the Earth’s atmosphere-ocean system; Part 1, Flux in the atmosphere and ocean, J. Phys. Ocean. 2, 139–145 (1972).

    Article  Google Scholar 

  48. G. N. Plass and G. W. Kattawa, Monte Carlo calculations of light scattering in clouds, Appl. Opt. 7, 415–419 (1968).

    Article  Google Scholar 

  49. W. E. Meador and W. R. Weaver, Two-function approximations, in: Multiple Light Scattering in Atmospheres, Oceans, Clouds and Snow, Institute for Atmosphere Optics and Remote Sensing, Short course No. 420, Williamsburg, Virginia, December 4–8, 1978.

    Google Scholar 

  50. W. S. Helliwell, A finite difference solution to the radiative transfer equation for in-water radiance, J. Opt. Soc. Am. 2, 1325–1330 (1985).

    Google Scholar 

  51. H. M. Heggestad, Optical communications through Multiple Scattering Media, Massachusetts Institute of Technology, Research Laboratory for Electronics Technical Report 472 (November, 1968 ).

    Google Scholar 

  52. L. B. Stotts, The radiance produced by laser radiation traversing a particulate multiple scattering medium, J. Opt. Soc. Am. 67, 815–816 (1977).

    Google Scholar 

  53. A. Ishimaru and S. T. Hong, Two frequency mutual coherence function, coherence bandwidth and coherence time of millimeter and optical waves in rain, fog and tubulence, Radio Science 11, 551–559 (1976).

    Article  MathSciNet  Google Scholar 

  54. A. Ishimaru and S. T. Hong, Multiple scattering effects on coherent bandwidth and pulse distortion of a wave propagating in a random distribution of particles, Radio Science 10, 637–644 (1975).

    Article  Google Scholar 

  55. K. Furutsu, Multiple scattering of waves in a medium of randomly distributed particles and derivation of the transport equation, Radio Science 10, 29–44 (1975).

    Article  MathSciNet  Google Scholar 

  56. P. H. Levine, Megatek Corporation, private communication.

    Google Scholar 

  57. E. A. Bucher, Propagation models for optical communications through fog and clouds, Proc. Nat. Electron. Conf. 29, 180–185 (1975).

    Google Scholar 

  58. A. Gordon, Practical approaches to underwater multiple-scattering problems, Proc. Soc. Photo-Opt. Instrum. Eng. 64, 84–93 (1975).

    Google Scholar 

  59. L. B. Stotts, Atmospheric, Space and Underwater Optical Communications, National Science Foundation Grantee-Users Meeting on Optical Communications, Pittsburg, Pennsylvania, June 5–7, 1978.

    Google Scholar 

  60. L. B. Stotts, Satellite, Surface and Subsurface Optical Communications, International Telemetering Conference, ITC/USA/’78, Los Angeles, California, November 14–16, 1978.

    Google Scholar 

  61. E. A. Bucher, Computer simulation of light pulse propagation for communication through thick clouds, Appl. Opt. 12, 2391–2400 (1973).

    Article  Google Scholar 

  62. L. B. Stotts, Closed form expression for optical pulse broadening in multiple scattering media, Appl. Opt. 17, 504–505 (1978).

    Article  Google Scholar 

  63. M. A. Millbach, Computer Simulation of Light Propagation through a Scattering Medium, Masters thesis, Navy Postgraduate School, Monterey, California (June, 1978 ).

    Google Scholar 

  64. E. A. Bucher and R. M. Lerner, Experiments on light pulse communication through atmospheric clouds, Appl. Opt. 12, 2401–2414 (1973).

    Article  Google Scholar 

  65. R. A. Elliot, Wave Propagation in Particulate Media, Oregon Graduate Center, Annual Summary Report, Contract No. N0014–79-c-0897 (May 31, 1981 ).

    Google Scholar 

  66. J. C. Matter and R. G. Bradley, Optical pulse propagation through clouds, Appl. Opt. 20, 554–563 (1981).

    Article  Google Scholar 

  67. W. H. Paik, M. Tebyani, D. J. Epstein, R. S. Kennedy, and J. H. Shapiro, Propagation experiments in low-visibility atmospheres, Appl. Opt. 17, 899–905 (1978).

    Article  Google Scholar 

  68. J. S. Ryan and A. I. Carswell, Laser beam broadening and depolarization in dense fog, J. Opt. Soc. Am. 68, 900–908 (1978).

    Article  Google Scholar 

  69. R. S. Kennedy and J. H. Shapiro, Multipath Dispersion in Low Visibility Optical Communication Channels, Rome Air Development Center Technical Report, RADC-TR77–73 (February, 1977 ).

    Google Scholar 

  70. W. S. Ross, W. P. Jaesar, J. Nakai, T. T. Nguyen, and J. H. Shapiro, Atmospheric optical propagation-an integrated approach, Opt. Eng. 21, 775–785 (1982).

    Article  Google Scholar 

  71. J. A. Curcio and L. F. Drummeter, Jr., Experimental Observations of Forward Scattering of Light in the Lower Atmosphere, Naval Research Laboratory, Technical Report No. NRL 6152 (September 30, 1985 ).

    Google Scholar 

  72. G. T. Ruck, Feasibility of Non-line-of-sight Laser Communications, Battelle Memorial Institute, Columbus, Ohio, Report No. BAT-171-A (December 15, 1964 ).

    Google Scholar 

  73. M. King and S. Kainer, Some parameters of a laser-type beyond-the-horizon communication link, Proc. IEEE 53, 137 (1965).

    Article  Google Scholar 

  74. Division 6, Quarterly Technical Summary, Space Communications, MIT Lincoln Laboratory, Cambridge, Massachusetts (March 15, 1969), pp. 10–12, DDC AD-851886.

    Google Scholar 

  75. R. S. Kennedy, Communication through optical scattering channels: An introduction, Proc. IEEE 58, 1651 (1970).

    Article  Google Scholar 

  76. P. H. Levine and M. E. O’Brien, ELOS Meteorology Sensitivity Study, Megatek Final Report No. R2005–099-F-1, Contract No. N00123–75-C-0328, Task MEG-TA-009 (November 15, 1977 ).

    Google Scholar 

  77. J. D. Jackson, Classical Electrodynamics, Second Edition, John Wiley and Sons, New York (1975).

    MATH  Google Scholar 

  78. R. F. Lutomirski, D. E. Snead, and W. L. Woodie, The Marine Boundary Layer Optical Communication Link, Pacific Sierra Research Technical Report, PSR Report 811 ( July, 1978 ), Appendix A.

    Google Scholar 

  79. D. Bauer and A. Morel, Etude aux petits angles des l’indicatrix des diffusion de la lumière par les equx de mer, Ann. Geophys. 23, 122 (1967).

    Google Scholar 

  80. L. Dolin, Propagation of a narrow light beam in a medium with strongly anisotropic scattering, Radiophys. Quantum Electron. 9, 40–47 (1966).

    Google Scholar 

  81. J. W. Goodman, Introduction to Fourier Optics, McGraw-Hill, New York (1968).

    Google Scholar 

  82. M. A. Boc and A. Deepak, Multiple scattering corrections to the solar aureole, in: Proceedings of the Third Conference on Atmospheric Radiation, Davis, California, June 28–30, 1978, pp. 12–13, American Meteorological Society, Boston (1978).

    Google Scholar 

  83. R. D. Richtmyer and K. W. Morton, Difference Methods for Initial-Value Problems, Interscience Publishers, New York (1967).

    MATH  Google Scholar 

  84. J. E. Tyler, Radiance distribution as a function of depth in an underwater environment, Bull. Scripps Inst. Oceanog. 7, 363 (1960).

    Google Scholar 

  85. K. Furutsu, Diffusion equation derived from space-time transport equation, J. Opt. Soc. Am. 70, 360–366 (1980).

    Article  MathSciNet  Google Scholar 

  86. S. Ito and K. Furutsu, Theory of light pulse propagation through thick clouds, J. Opt. Soc. Am. 70, 366–374 (1980).

    Article  MathSciNet  Google Scholar 

  87. A. Ishimaru, Diffusion of a pulse in densely distributed scatters, J. Opt. Soc. Am. 68, 1045–1050 (1978).

    Article  Google Scholar 

  88. S. Ito, Comparison of diffusion theories for optical pulse waves propagated in discrete random media, J. Opt. Soc. Am. A 1, 502–505 (1984).

    Article  Google Scholar 

  89. A. Ishimaru, Difference between Ishimaru’s and Furutsu’s theories on pulse propagation in discrete random media, J. Opt. Soc. Am. A 1, 506–509 (1984).

    Google Scholar 

  90. G. M. Lee, G. M. Ciany, G. Schroeder, and J. Fenier, Availability models for space-to-earth optical communication links, Appendix A, in: S. Karp, A Test Plan for Determining the Feasibility of Optical Satellite Communications through Clouds at Visible Frequencies, Naval Ocean Systems Center Technical Note, TN279 (July 1, 1978 ).

    Google Scholar 

  91. G. M. Lee, C. M. Ciany, and C. Tranchita, McDonnell-Douglas Astronautics, private communication.

    Google Scholar 

  92. R. E. Danielson, D. R. Moore, and H. C. Van de Hulst, The transfer of visible radiation through clouds, J. Atmos. Sci. 26, 1078–1087 (1969).

    Article  Google Scholar 

  93. K. S. Baker and R. C. Smith, Quasi-inherent characteristics of the diffuse attenuation coefficient for irradiance, Proc. Soc. Photo-Opt. Instrum. Eng. Ocean Optics VI 208, 60–63 (1969).

    Article  Google Scholar 

  94. J. Gordon, Direction Radiance (Luminescence) of the Sea Surface, Scripps Institution of Oceanography, SIO Ref. B9–20 (October, 1969 ).

    Google Scholar 

  95. C. Cox and W. Munk, Statistics of the sea surface derived from sun glitter, J. Mar. Res. 13 (2), 63 (1954).

    Google Scholar 

  96. H. R. Gordon, Albedo of the ocean-atmospheric system: Influence of the sea foam, Appl. Opt. 16, 2257–2260 (1976).

    Google Scholar 

  97. Naval Blue-Green Single Pulse Downlink Propagation Model, Naval Ocean Systems Center, San Diego, California TR 387 (January 1, 1979 ).

    Google Scholar 

  98. S. Karp and R. M. Gagliardi, The design of a pulse-position-modulated optical communication system, IEEE Trans. Commun. Tech. COM-17, 670–676 (December, 1969 ).

    Google Scholar 

  99. R. M. Gagliardi and S. Karp, M-ary Poisson detection and optical communications, IEEE Trans. Commun. Tech. COM-17, 208–216 (1969).

    Google Scholar 

  100. C. W. Helstrom, Statistical Theory of Signal Detection, Pergamon Press, New York (1968).

    Google Scholar 

  101. A. J. Viterbi, Principles of Coherent Communications, McGraw-Hill, New York (1966).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer Science+Business Media New York

About this chapter

Cite this chapter

Karp, S., Gagliardi, R.M., Moran, S.E., Stotts, L.B. (1988). Mathematical Models for Energy Propagation in the Optical Scatter Channel. In: Optical Channels. Applications of Communications Theory. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0806-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0806-3_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-0808-7

  • Online ISBN: 978-1-4899-0806-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics