Advertisement

Mathematical Models for Energy Propagation in the Optical Scatter Channel

  • Sherman Karp
  • Robert M. Gagliardi
  • Steven E. Moran
  • Larry B. Stotts
Part of the Applications of Communications Theory book series (ACTH)

Abstract

With the basic composition of the optical scatter channel defined in Chapter 6, we can now turn to how this information is used to quantify radiance and irradiance propagation in that medium. Unfortunately, the extensive amount of material currently available on the subject prohibits our being complete and all-inclusive in one chapter of a book. Therefore, we shall limit our discussions to those mathematical approaches and results which have found, and still find, great utility in optical communication systems analysis. We will begin the chapter with a formulation of the mutual coherence function for multiple-forward-scatter media, as derived by Lutomirski.(1) This development will be discussed in terms of its physical implications and also its validity in predicting real-life phenomena. The discussion will then move into a radiative transfer analysis of energy transport in particulate media, and the basic limitations of the closed-formed solutions derived by the small-angle scattering/Huygens-Fresnel approximations will be considered. The conclusion one draws at this point is that the aforementioned techniques can provide insight and answers to optical propagation problems if used properly, but can give misleading results if not. Other mathematical techniques can then be employed if one expects channel characterizations outside the validity range of these closed-form solution sets. Some of the more useful analytical methods of this type will be highlighted and discussed. The result of this discussion will be an in-depth look at two Monte Carlo-based analyses which provide function sets of engineering equations for general atmospheric and marine communication system performance assessments. The next section of this chapter will describe three mathematical techniques which can be applied to energy transfer through the air/sea interface. The final section of this chapter will illustrate how these propagation models can be integrated to yield a total picture of radiation transport in the optical scatter channel. Throughout the chapter, comparisons between model predictions and experimental data will be made whenever possible.

Keywords

Energy Propagation Optical Communication Optical Thickness Scattered Radiance Particulate Medium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. F. Lutomirski, Atmospheric degradation of electro-optical system performance, Appl. Opt. 17, 3915–3921 (1978).CrossRefGoogle Scholar
  2. 2.
    R. L. Fante, Electromagnetic beam propagation in turbulent media, Proc. IEEE 63, 1669–1662 (1975).CrossRefGoogle Scholar
  3. 3.
    S. Karp, Optical communications between underwater and above-surface (satellite) terminals, IEEE Trans. Commun. COM-24, 66–81 (1976).Google Scholar
  4. 4.
    A. Ishimaru, Theory and application of wave propagation and scattering in random media, Proc. IEEE 68, 1030–1061 (1977).CrossRefGoogle Scholar
  5. 5.
    L. B. Stotts and P. J. Titterton, Link Models for Space/Air-to-Subsurface Optical Communications Analysis, International Telemetering Conference, ITC/USA/80, San Diego, California, October 14–16, 1980.Google Scholar
  6. 6.
    R. L. Fante, Electromagnetic beam propagation in turbulent media: an update, Proc. IEEE 68, 1424–1443 (1980).CrossRefGoogle Scholar
  7. 7.
    R. L. Lutomirski and D. E. Snead, Green’s Function Calculation of the Effects of the Air/Sea Interface on Optical Propagation, in: Special Topics in Optical Propagation, AGARD Conference Proceedings No. 300, pp. 3–1–3–8, Technical Editing and Reproduction Ltd., London (1981).Google Scholar
  8. 8.
    S. Chandrasekhar, Radiative Transfer,Clarendon, Oxford (1960) [Reprinted by Dover Books, New York (1960)].Google Scholar
  9. 9.
    R. W. Preisendorfer, Hydrologic Optics, U.S. Department of Commerce, National Oceanic and Atmospheric Administration, Environmental Research Laboratories (1976).Google Scholar
  10. 10.
    R. W. Preisendorfer, Radiative Transfer on Discrete Spaces, Pergamon Press, New York (1965).Google Scholar
  11. 11.
    H. C. Van de Hulst, Multiple Light Scattering, Vol. 1, Acadmic Press, New York (1980).Google Scholar
  12. 12.
    A. Ishimaru, Wave Propagation and Scattering in Random Media, Vols. 1 and 2, Academic Press, New York (1978).Google Scholar
  13. 13.
    N. G. Jerlov and E. S. Nielsen (eds.), Optical Aspects of Oceanography, Academic Press, New York (1974).Google Scholar
  14. 14.
    N. G. Jerlov, Marine Optics, Elsevier Oceanography Series No. 14, Elsevier, Amsterdam (1976).Google Scholar
  15. 15.
    Naval Blue-Green Single-Pulse Downlink Propagation Model, Naval Ocean Systems Center, San Diego, California, Technical Report 387 (January 1, 1979 ).Google Scholar
  16. 16.
    R. L. Fante, Wave propagation in random media: a systems approach, in: Progress in Optics (E. Wolf, ed.), Vol. XXII, Chapter 6, Elsevier (in preparation).Google Scholar
  17. 17.
    R. F. Lutomirski and H. T. Yura, Propagation of a finite optical beam in an inhomogeneous medium, Appl. Opt. 10, 1654 (1971).Google Scholar
  18. l8. D. A. de Wolf, Coherence of a light through an optically dense tubid layer, Appl. Opt. 17, 1280–1285 (1978).CrossRefGoogle Scholar
  19. 19.
    H. T. Yura, A Multiple Scattering Analysis of the Propagation of Radiance through the Atmosphere, URSI Commission F-sponsored Conference on Propagation in Non-ionized Media, La Baule, France (1977).Google Scholar
  20. 20.
    R. M. Gagliardi and S. Karp, Optical Communications, Wiley-Interscience, New York (1976).Google Scholar
  21. 21.
    W. H. Wells, Loss of resolution in water as a result of multiple small-angle scattering, J. Opt. Soc. Am. 59, 686 (1969).CrossRefGoogle Scholar
  22. 22.
    D. Arnush, Underwater light-beam propagation in the small-angle scattering approximation, J. Opt. Soc. Am. 62, 1109 (1972).CrossRefGoogle Scholar
  23. 23.
    R. L. Fante, Propagation of electromagnetic waves through turbulent plasma using transport theory, IEEE Trans. Antennas Propagat. AP-21, 750–755 (1973).Google Scholar
  24. 24.
    R. F. Lutomirski, The Irradiance Distribution in a Scattering Medium, Pacific Sierra Research Corporation, PSR Note 73 (May, 1975 ).Google Scholar
  25. 25.
    H. T. Yura, Aerospace Corporation, private communications.Google Scholar
  26. 26.
    D. M. Bravo-Zhivotovsky, L. S. Dolin, A. G. Luchmin, and V. A. Sarelyev, Structure of a narrow light beam in sea water, Atmos. Oceanic Phys. 5, 160–167 (1969)Google Scholar
  27. 27.
    P. Y. Ganich and I. M. Levin, Extinction of the brightness of self-luminous objects in a scattering medium, Bull. Acad. Sci. (USSR), Atmos. Oceanic Phys. 4, (1968).Google Scholar
  28. 28.
    S. Karp, Optical Communications between Underwater and Above-Surface (Satellite) Terminals, Naval Electronics Laboratory Center Technical Document, unclassified, TD 430 (June 1, 1975 ).Google Scholar
  29. 29.
    S. Q. Duntley, Underwater Lighting by Submerged Lasers, Visibility Laboratory, Scripps Institute of Oceanography Technical Report, SIO REF 71–1 (June 1, 1971 ).Google Scholar
  30. 30.
    R. G. Driscoll, J. N. Martin, and S. Karp, OPSATCOM Field Measurements, Naval Electronics Laboratory Center Technical Document, unclassified, TD490 (June 1, 1976 ).Google Scholar
  31. 31.
    R. D. Anderson and L. B. Stotts, Underwater measurements between off-axis radiance compared with various analytical treatments of the radiative transfer equation, J. Opt. Soc. Am. 72, 738–746 (1982).CrossRefGoogle Scholar
  32. 32.
    W. G. Tam and A. Zardecki, Laser beam propagation in particulate media, J. Opt. Soc. Am. 69, 68 (1979).CrossRefGoogle Scholar
  33. 33.
    L. B. Stotts, Limitations of approximate Fourier techniques in solving radiative transfer problems, J. Opt. Soc. Am. 69, 1719 (1979).CrossRefGoogle Scholar
  34. 34.
    R. L. Fante, Range of validity of the quadratic approximation for propagation through a random distribution of large aerosol particles, Appl. Opt. 21, 9–11 (1982).CrossRefGoogle Scholar
  35. 35.
    R. P. Bocker, Naval Ocean Systems Center, private communication.Google Scholar
  36. 36.
    S. L. Valley (ed.), Handbook of Geophysics and Space Environments, McGraw-Hill, New York, Chapter 7, Table 7–4, pp. 7–23 (1965).Google Scholar
  37. 37.
    A. J. LaRocca, Atmospheric absorption, in: The Infrared Handbook ( W. L. Wolfe and G. J. Zissis, eds.), The Environmental Institute of Michigan, Ann Arbor (1978).Google Scholar
  38. 38.
    W. K. Pratt, Laser Communications,John Wiley and Sons, New York.Google Scholar
  39. 39.
    A. Deepak (ed.), Inversion Methods in Atmospheric Remote Sounding, Academic Press, New York (1977).Google Scholar
  40. 40.
    J. Lenoble, Standard Procedures to Compute Atmospheric Radiative Transfer in a Scattering Atmosphere, International Association of Meteorology and Atmospheric Physics (IAMAP), Radiation Commission, National Center for Atmospheric Research, Boulder, Colorado (July, 1977 ).Google Scholar
  41. 41.
    S. A. W. Gerstl and A. Zardecki, Discrete-ordinates finite-element method for atmospheric radiative transfer and remote sensing, Appl. Opt. 24, 81–93 (1985).CrossRefGoogle Scholar
  42. 42.
    A. Zardecki, S. A. W. Gerstl, and J. F. Embury, Application of the 2-D discrete-ordinate method to multiple scattering of laser radiation, Appl. Opt. 22, 1346–1353 (1983).CrossRefGoogle Scholar
  43. 43.
    G. N. Plass, G. W. Kattawar, and F. E. Catchings, Matrix operator theory of radiative transfer; Part 1, Rayleigh scattering, Appl. Opt. 12, 314–329 (1973).CrossRefGoogle Scholar
  44. 44.
    R. M. Lerner and J. D. Summers, Monte Carlo description of time-and space-resolved multiple forward scatter in natural water, Appl. Opt. 21, 861–869 (1982).CrossRefGoogle Scholar
  45. 45.
    G. W. Kattawar, Monte Carlo methods in radiative transfer, in: Multiple Light Scattering in Atmospheres, Oceans, Clouds and Snow, Institute for Atmospheric Optics and Remote Sensing, Short course No. 420, Williamsburg, Virginia, December 4–8, 1978.Google Scholar
  46. 46.
    H. R. Gordon, O. B. Brown, and M. M. Jacobs, Computed relationships between the inherent and apparent optical properties of a flat homogeneous ocean, Appl. Opt. 29, 417–427 (1976).Google Scholar
  47. 47.
    G. N. Plass and G. W. Kattawar, Monte Carlo calculations of radiative transfer in the Earth’s atmosphere-ocean system; Part 1, Flux in the atmosphere and ocean, J. Phys. Ocean. 2, 139–145 (1972).CrossRefGoogle Scholar
  48. 48.
    G. N. Plass and G. W. Kattawa, Monte Carlo calculations of light scattering in clouds, Appl. Opt. 7, 415–419 (1968).CrossRefGoogle Scholar
  49. 49.
    W. E. Meador and W. R. Weaver, Two-function approximations, in: Multiple Light Scattering in Atmospheres, Oceans, Clouds and Snow, Institute for Atmosphere Optics and Remote Sensing, Short course No. 420, Williamsburg, Virginia, December 4–8, 1978.Google Scholar
  50. 50.
    W. S. Helliwell, A finite difference solution to the radiative transfer equation for in-water radiance, J. Opt. Soc. Am. 2, 1325–1330 (1985).Google Scholar
  51. 51.
    H. M. Heggestad, Optical communications through Multiple Scattering Media, Massachusetts Institute of Technology, Research Laboratory for Electronics Technical Report 472 (November, 1968 ).Google Scholar
  52. 52.
    L. B. Stotts, The radiance produced by laser radiation traversing a particulate multiple scattering medium, J. Opt. Soc. Am. 67, 815–816 (1977).Google Scholar
  53. 53.
    A. Ishimaru and S. T. Hong, Two frequency mutual coherence function, coherence bandwidth and coherence time of millimeter and optical waves in rain, fog and tubulence, Radio Science 11, 551–559 (1976).MathSciNetCrossRefGoogle Scholar
  54. 54.
    A. Ishimaru and S. T. Hong, Multiple scattering effects on coherent bandwidth and pulse distortion of a wave propagating in a random distribution of particles, Radio Science 10, 637–644 (1975).CrossRefGoogle Scholar
  55. 55.
    K. Furutsu, Multiple scattering of waves in a medium of randomly distributed particles and derivation of the transport equation, Radio Science 10, 29–44 (1975).MathSciNetCrossRefGoogle Scholar
  56. 56.
    P. H. Levine, Megatek Corporation, private communication.Google Scholar
  57. 57.
    E. A. Bucher, Propagation models for optical communications through fog and clouds, Proc. Nat. Electron. Conf. 29, 180–185 (1975).Google Scholar
  58. 58.
    A. Gordon, Practical approaches to underwater multiple-scattering problems, Proc. Soc. Photo-Opt. Instrum. Eng. 64, 84–93 (1975).Google Scholar
  59. 59.
    L. B. Stotts, Atmospheric, Space and Underwater Optical Communications, National Science Foundation Grantee-Users Meeting on Optical Communications, Pittsburg, Pennsylvania, June 5–7, 1978.Google Scholar
  60. 60.
    L. B. Stotts, Satellite, Surface and Subsurface Optical Communications, International Telemetering Conference, ITC/USA/’78, Los Angeles, California, November 14–16, 1978.Google Scholar
  61. 61.
    E. A. Bucher, Computer simulation of light pulse propagation for communication through thick clouds, Appl. Opt. 12, 2391–2400 (1973).CrossRefGoogle Scholar
  62. 62.
    L. B. Stotts, Closed form expression for optical pulse broadening in multiple scattering media, Appl. Opt. 17, 504–505 (1978).CrossRefGoogle Scholar
  63. 63.
    M. A. Millbach, Computer Simulation of Light Propagation through a Scattering Medium, Masters thesis, Navy Postgraduate School, Monterey, California (June, 1978 ).Google Scholar
  64. 64.
    E. A. Bucher and R. M. Lerner, Experiments on light pulse communication through atmospheric clouds, Appl. Opt. 12, 2401–2414 (1973).CrossRefGoogle Scholar
  65. 65.
    R. A. Elliot, Wave Propagation in Particulate Media, Oregon Graduate Center, Annual Summary Report, Contract No. N0014–79-c-0897 (May 31, 1981 ).Google Scholar
  66. 66.
    J. C. Matter and R. G. Bradley, Optical pulse propagation through clouds, Appl. Opt. 20, 554–563 (1981).CrossRefGoogle Scholar
  67. 67.
    W. H. Paik, M. Tebyani, D. J. Epstein, R. S. Kennedy, and J. H. Shapiro, Propagation experiments in low-visibility atmospheres, Appl. Opt. 17, 899–905 (1978).CrossRefGoogle Scholar
  68. 68.
    J. S. Ryan and A. I. Carswell, Laser beam broadening and depolarization in dense fog, J. Opt. Soc. Am. 68, 900–908 (1978).CrossRefGoogle Scholar
  69. 69.
    R. S. Kennedy and J. H. Shapiro, Multipath Dispersion in Low Visibility Optical Communication Channels, Rome Air Development Center Technical Report, RADC-TR77–73 (February, 1977 ).Google Scholar
  70. 70.
    W. S. Ross, W. P. Jaesar, J. Nakai, T. T. Nguyen, and J. H. Shapiro, Atmospheric optical propagation-an integrated approach, Opt. Eng. 21, 775–785 (1982).CrossRefGoogle Scholar
  71. 71.
    J. A. Curcio and L. F. Drummeter, Jr., Experimental Observations of Forward Scattering of Light in the Lower Atmosphere, Naval Research Laboratory, Technical Report No. NRL 6152 (September 30, 1985 ).Google Scholar
  72. 72.
    G. T. Ruck, Feasibility of Non-line-of-sight Laser Communications, Battelle Memorial Institute, Columbus, Ohio, Report No. BAT-171-A (December 15, 1964 ).Google Scholar
  73. 73.
    M. King and S. Kainer, Some parameters of a laser-type beyond-the-horizon communication link, Proc. IEEE 53, 137 (1965).CrossRefGoogle Scholar
  74. 74.
    Division 6, Quarterly Technical Summary, Space Communications, MIT Lincoln Laboratory, Cambridge, Massachusetts (March 15, 1969), pp. 10–12, DDC AD-851886.Google Scholar
  75. 75.
    R. S. Kennedy, Communication through optical scattering channels: An introduction, Proc. IEEE 58, 1651 (1970).CrossRefGoogle Scholar
  76. 76.
    P. H. Levine and M. E. O’Brien, ELOS Meteorology Sensitivity Study, Megatek Final Report No. R2005–099-F-1, Contract No. N00123–75-C-0328, Task MEG-TA-009 (November 15, 1977 ).Google Scholar
  77. 77.
    J. D. Jackson, Classical Electrodynamics, Second Edition, John Wiley and Sons, New York (1975).zbMATHGoogle Scholar
  78. 78.
    R. F. Lutomirski, D. E. Snead, and W. L. Woodie, The Marine Boundary Layer Optical Communication Link, Pacific Sierra Research Technical Report, PSR Report 811 ( July, 1978 ), Appendix A.Google Scholar
  79. 79.
    D. Bauer and A. Morel, Etude aux petits angles des l’indicatrix des diffusion de la lumière par les equx de mer, Ann. Geophys. 23, 122 (1967).Google Scholar
  80. 80.
    L. Dolin, Propagation of a narrow light beam in a medium with strongly anisotropic scattering, Radiophys. Quantum Electron. 9, 40–47 (1966).Google Scholar
  81. 81.
    J. W. Goodman, Introduction to Fourier Optics, McGraw-Hill, New York (1968).Google Scholar
  82. 82.
    M. A. Boc and A. Deepak, Multiple scattering corrections to the solar aureole, in: Proceedings of the Third Conference on Atmospheric Radiation, Davis, California, June 28–30, 1978, pp. 12–13, American Meteorological Society, Boston (1978).Google Scholar
  83. 83.
    R. D. Richtmyer and K. W. Morton, Difference Methods for Initial-Value Problems, Interscience Publishers, New York (1967).zbMATHGoogle Scholar
  84. 84.
    J. E. Tyler, Radiance distribution as a function of depth in an underwater environment, Bull. Scripps Inst. Oceanog. 7, 363 (1960).Google Scholar
  85. 85.
    K. Furutsu, Diffusion equation derived from space-time transport equation, J. Opt. Soc. Am. 70, 360–366 (1980).MathSciNetCrossRefGoogle Scholar
  86. 86.
    S. Ito and K. Furutsu, Theory of light pulse propagation through thick clouds, J. Opt. Soc. Am. 70, 366–374 (1980).MathSciNetCrossRefGoogle Scholar
  87. 87.
    A. Ishimaru, Diffusion of a pulse in densely distributed scatters, J. Opt. Soc. Am. 68, 1045–1050 (1978).CrossRefGoogle Scholar
  88. 88.
    S. Ito, Comparison of diffusion theories for optical pulse waves propagated in discrete random media, J. Opt. Soc. Am. A 1, 502–505 (1984).CrossRefGoogle Scholar
  89. 89.
    A. Ishimaru, Difference between Ishimaru’s and Furutsu’s theories on pulse propagation in discrete random media, J. Opt. Soc. Am. A 1, 506–509 (1984).Google Scholar
  90. 90.
    G. M. Lee, G. M. Ciany, G. Schroeder, and J. Fenier, Availability models for space-to-earth optical communication links, Appendix A, in: S. Karp, A Test Plan for Determining the Feasibility of Optical Satellite Communications through Clouds at Visible Frequencies, Naval Ocean Systems Center Technical Note, TN279 (July 1, 1978 ).Google Scholar
  91. 91.
    G. M. Lee, C. M. Ciany, and C. Tranchita, McDonnell-Douglas Astronautics, private communication.Google Scholar
  92. 92.
    R. E. Danielson, D. R. Moore, and H. C. Van de Hulst, The transfer of visible radiation through clouds, J. Atmos. Sci. 26, 1078–1087 (1969).CrossRefGoogle Scholar
  93. 93.
    K. S. Baker and R. C. Smith, Quasi-inherent characteristics of the diffuse attenuation coefficient for irradiance, Proc. Soc. Photo-Opt. Instrum. Eng. Ocean Optics VI 208, 60–63 (1969).CrossRefGoogle Scholar
  94. 94.
    J. Gordon, Direction Radiance (Luminescence) of the Sea Surface, Scripps Institution of Oceanography, SIO Ref. B9–20 (October, 1969 ).Google Scholar
  95. 95.
    C. Cox and W. Munk, Statistics of the sea surface derived from sun glitter, J. Mar. Res. 13 (2), 63 (1954).Google Scholar
  96. 96.
    H. R. Gordon, Albedo of the ocean-atmospheric system: Influence of the sea foam, Appl. Opt. 16, 2257–2260 (1976).Google Scholar
  97. 97.
    Naval Blue-Green Single Pulse Downlink Propagation Model, Naval Ocean Systems Center, San Diego, California TR 387 (January 1, 1979 ).Google Scholar
  98. 98.
    S. Karp and R. M. Gagliardi, The design of a pulse-position-modulated optical communication system, IEEE Trans. Commun. Tech. COM-17, 670–676 (December, 1969 ).Google Scholar
  99. 99.
    R. M. Gagliardi and S. Karp, M-ary Poisson detection and optical communications, IEEE Trans. Commun. Tech. COM-17, 208–216 (1969).Google Scholar
  100. 100.
    C. W. Helstrom, Statistical Theory of Signal Detection, Pergamon Press, New York (1968).Google Scholar
  101. 101.
    A. J. Viterbi, Principles of Coherent Communications, McGraw-Hill, New York (1966).Google Scholar

Copyright information

© Springer Science+Business Media New York 1988

Authors and Affiliations

  • Sherman Karp
    • 1
  • Robert M. Gagliardi
    • 2
  • Steven E. Moran
    • 3
  • Larry B. Stotts
    • 4
  1. 1.Lutronix, Inc.San DiegoUSA
  2. 2.University of Southern CaliforniaLos AngelesUSA
  3. 3.SAICSan DiegoUSA
  4. 4.DARPAArlingtonUSA

Personalised recommendations