Skip to main content

The Turbulence Channel

  • Chapter
Book cover Optical Channels

Part of the book series: Applications of Communications Theory ((ACTH))

  • 197 Accesses

Abstract

In Chapter 4 we examined the guided optical channel or fiber link. In this chapter we consider the turbulent atmosphere as an unguided optical channel. It is well known that turbulence-induced random fluctuations in the atmosphere’s temperature generate corresponding random irregularities in the index of refraction. Upon passing through these irregularities, the wavefronts associated with an optical beam become distorted, the magnitude of the distortions depending on the strength of the turbulence and the length of the atmospheric optical path. Among the effects which are attributable to wavefront distortion and which can seriously degrade the performance of an optical communication system are (1) spreading of the beam beyond that normally caused by diffraction, (2) scintillation of the received intensity, (3) a decrease in the spatial and temporal coherence, and (4) wander of the beam from position to position. Quantification of these effects requires a theoretical understanding of the relationship between the properties of the medium and the transmitted optical radiation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Ishimaru, Wave Propagation and Scattering in Random Media, Vols. 1 and 2, Academic Press, New York (1978).

    Google Scholar 

  2. V. I. Tatarski, Wave Propagation in a Turbulent Medium (translated by R. A. Silverman), McGraw-Hill, New York (1961).

    Google Scholar 

  3. V. I. Tatarski, The Effects of the Turbulent Atmosphere on Wave Propagation (translated by Israel Program for Scientific Translations), U.S. Department of Commerce, National Technical Information Service, Springfield, Virginia (1971) [originally published in 1967 ].

    Google Scholar 

  4. R. Fante, Electromagnetic beam propagation in turbulent media, Proc. IEEE 63, 1669–1692 (1975).

    Article  Google Scholar 

  5. R. Fante, Electromagnetic beam propagation in turbulent media, an update, Proc. IEEE 68, 1424–1443 (1980).

    Article  Google Scholar 

  6. S. F. Clifford, The classical theory of wave propagation in a turbulent medium, in: Laser Beam Propagation in the Atmosphere (J. W. Strobehn, ed. ), Springer-Verlag (1978).

    Google Scholar 

  7. D. Fried, Limiting resolution through the atmosphere, J. Opt. Soc. Am. 56, 1380 (1966).

    Article  Google Scholar 

  8. R. E. Hufnagel and N. R. Stanley, Modulation transfer function associated with image transmission through turbulent media, J. Opt. Soc. Am. 54, 52–61 (1964).

    Article  Google Scholar 

  9. R. E. Hufnagel and N. R. Stanley, Propagation through atmospheric turbulence, in: The Infrared Handbook (W. L. Wolf and G. J. Zissis, eds.), The Environmental Institute of Michigan, Ann Arbor, Michigan (1978).

    Google Scholar 

  10. D. Fried, Optical heterodyne detection of an atmospherically distorted wavefront, Proc. IEEE 55, 57–67 (1967).

    Article  Google Scholar 

  11. R. Fante, Propagation of electromagnetic waves through a turbulent plasma using transport theory, IEEE Trans. Antennas Propagat. AP-2, 750–755 (1973).

    Google Scholar 

  12. R. Lutomirski and H. Yura, Propagation of a finite optical beam in an inhomogeneous medium, Appl. Opt. 10, 1652–1658 (1971).

    Article  Google Scholar 

  13. Philip M. Morse and Herman Feshbach, Methods of Theoretical Physics, McGraw-Hill, New York (1953), pp. 804–806.

    MATH  Google Scholar 

  14. R. Fante, Mutual coherence function and frequency spectrum of a laser beam propagating through atmospheric turbulence, J. Opt. Soc. Am. 64, 592–598 (1974).

    Article  Google Scholar 

  15. H. Yura, Mutual coherence function of a finite cross section optical beam propagating in a turbulent medium, Appl. Opt. 13, 1399–1406 (1972).

    Article  Google Scholar 

  16. G. Parry, Measurement of atmospheric turbulence induced intensity fluctuations in a laser beam, Optical Acta 28, 715–728 (1981).

    Article  Google Scholar 

  17. R. L. Phillips and L. C. Andrews, Measured statistics of laser-light scattering in atmospheric turbulence, J. Opt. Soc. Am. 71, 864–870 (1981).

    Article  Google Scholar 

  18. E. Jakeman and P. N. Pusey, Significance of K-Distributions in Scattering Experiments, Phys. Rev. Lett., 40 (9), 546–550 (1978).

    Article  Google Scholar 

  19. G. Parry and P. N. Pusey, K-distributions in atmospheric propagation of laser light, J. Opt. Soc. Am. 69 (5), 796–798 (1979).

    Article  Google Scholar 

  20. E. Jakeman, On the statistics of K-distributed noise, J. Phys. A: Math. Gen. 13, 31–48 (1980).

    Article  MATH  Google Scholar 

  21. R. Barakat, Weak-scatter generalization of the K-density function with application to laser scattering in atmospheric turbulence, J. Opt. Soc. Am. A 3, 401–409 (1986).

    Article  Google Scholar 

  22. R. Barakat, Weak-scatter generalization of the K-density function. II. Probability density of total phase, J. Opt. Soc. Am. A 4 (7), 1213–1219 (1987).

    Article  Google Scholar 

  23. E. Jakeman and R. J. A. Tough, Generalized K-distribution: a statistical model for weak scattering, J. Opt. Soc. Am. A 4 (9), 1764–1772 (1987).

    Article  Google Scholar 

  24. D. Fried, Aperture averaging of scintillation, J. Opt. Soc. Am. 57 (1967).

    Google Scholar 

  25. Paul H. Deitz and Neal J. Wright, Saturation of scintillation magnitude in near-earth optical propagation, J. Opt. Soc. Am. 59 (5), 527–535 (1969).

    Article  Google Scholar 

  26. H. Yura, Short term average optical-beam spread in a turbulent medium, J. Opt. Soc. Am. 63, 567–572 (1973).

    Article  Google Scholar 

  27. D. Fried, Statistics of geometric representation of wavefront distortion, J. Opt. Soc. Am. 55, 1427 (1965).

    Article  MathSciNet  Google Scholar 

  28. H. Hodara, Refractive Index Fluctuations in Seawater, AGARD Lecture Series 61 on Optics of the Sea, Neuilly Sur Seine, France (1973), pp. 2.2–1–2.2.–12.

    Google Scholar 

  29. L. Lieberman, The effect of temperature inhomogeneities in the ocean on the propagation of sound, J. Opt. Soc. Am. 23, 563 (1951).

    Google Scholar 

  30. R. Fante, Intensity, Coherence and Frequency Spectrum of a Focused Beam in a Random Media, AFCRL Technical Report, AFCRL-TR-7 4–0335, Physical Sciences Research Papers No. 598 (1974).

    Google Scholar 

  31. R. D. Anderson and L. Stotts, Underwater measurements of off-axis radiance compared with various analytical treatments of the radiative transfer equation, J. Opt. Soc. Am. 72, 738–746 (1982).

    Article  Google Scholar 

  32. M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions, Dover Publications, New York (1965), p. 505.

    Google Scholar 

  33. R. M. Gagliardi and S. Karp, Optical Communications, Wiley-Interscience, New York (1976).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer Science+Business Media New York

About this chapter

Cite this chapter

Karp, S., Gagliardi, R.M., Moran, S.E., Stotts, L.B. (1988). The Turbulence Channel. In: Optical Channels. Applications of Communications Theory. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0806-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0806-3_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-0808-7

  • Online ISBN: 978-1-4899-0806-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics