Advertisement

Heterochrony in Colonial Marine Animals

  • John M. Pandolfi
Part of the Topics in Geobiology book series (TGBI, volume 7)

Abstract

Since the publication of Ontogeny and Phylogeny (Gould, 1977), many workers studying fossil organisms have used heterochrony as a working hypothesis to account for phylogenetic changes in evolving lineages. Previous studies have dealt largely with solitary, aclonal organisms, but heterochrony has also been identified in clonal colonial organisms: graptolites (Rickards, 1977), bryozoans (Schopf, 1977; Anstey, 1987), and tabulate corals (Pandolfi, 1984a, 1987).

Keywords

Sexual Maturity Developmental Level Median Septum Rugose Coral Tabulate Coral 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alberch, P., Gould, S. J., Oster, G., and Wake, D. B., 1979, Size and shape in ontogeny and phylogeny, Paleobiology 5: 296–317.Google Scholar
  2. Anstey, R. L., 1981, Zooid orientation structures and water flow patterns in Paleozoic bryozoan colonies, Lethaia 14: 287–302.CrossRefGoogle Scholar
  3. Anstey, R. L., 1987, Astogeny and phylogeny: Evolutionary heterochrony in Paleozoic bryozoans, Paleobiology 13: 20–43.Google Scholar
  4. Boardman, R. S., Cheetham, A. H., and Cook, P. L., 1970, Intracolony variation and the genus concept in Bryozoa, in: Proceedings North American Paleontological Convention, pp. 294-320.Google Scholar
  5. Buddemeier, R. W., Maragos, J. E., and Knutson, D. W., 1974, Radiographic studies of reef coral exoskeletons: Rates and patterns of corals growth, J. Exp. Mar. Biol. Ecol. 14: 179–200.CrossRefGoogle Scholar
  6. Bulman, O. M. B., 1963, The evolution and classification of the Graptoloidea, Q. J. Geol. Soc. Lond. 119: 401–418.CrossRefGoogle Scholar
  7. Coates, A. G., and Jackson, J. B. C., 1985, Morphological themes in the evolution of clonal and aclonal marine invertebrates, in: Population Biology and Evolution of Clonal Organisms (J. B. C. Jackson, L. W. Buss, and R. E. Cook, eds.), pp. 67–106, Yale University Press, New Haven.Google Scholar
  8. Coates, A. G., and Oliver, W. A., Jr., 1973, Coloniality in zoantharian corals, in: Animal Colonies: Development and Structure Through Time (R. S. Boardman, A. H. Cheetham, and W. A. Oliver, Jr., eds.), pp. 3–27, Dowden, Hutchison & Ross, Stroudsburg, Pennsylvania.Google Scholar
  9. Cooper, R. A., and Fortey, R. A., 1982, The Ordovician graptolites of Spitsbergen, Bull. Br. Mus. Nat. Hist. (Geol.) 36(3):157–302.Google Scholar
  10. Cowen, R., and Rider, J., 1973, Functional analysis of fenestellid bryozoan colonies, Lethaia 5: 145–164.Google Scholar
  11. Cumings, E. R., 1904, The development of some Paleozoic Bryozoa, Am. J. Sci. 17: 49–78.CrossRefGoogle Scholar
  12. Cumings, E. R., 1910, Paleontology and the recapitulation theory, Proc. Indiana Acad. Sei. 1909: 305–340.Google Scholar
  13. Davies, K. A., 1929, Notes on the graptolite faunas of the Upper Ordovician and Lower Silurian, Geol. Mag. 66: 1–27.CrossRefGoogle Scholar
  14. de Beer, G. R., 1930, Embryology and Evolution, Clarendon, Oxford.Google Scholar
  15. Dzik, J., 1975, The origin and early phylogeny of the cheilostomatous Bryozoa, Acta Palaeontol. Pol. 20: 395–423.Google Scholar
  16. Elles, G. L., 1922, The graptolite fauna of the British Isles, Proc. Geol. Assoc. 33: 168–200.CrossRefGoogle Scholar
  17. Elles, G. L., 1923, Evolutional palaeontology in relation to the Lower Palaeozoic rocks, Rep. Br. Assoc. Adv. Sci. 91: 83–107.Google Scholar
  18. Finney, S., 1978, The affinities of Osograptus, Glossograptus, Cryptograptus, Corynoides, and allied graptolites, Acta Palaeontol. Pol. 23: 481–495.Google Scholar
  19. Finney, S. C., 1986, Heterochrony, punctuated equilibrium, and graptolite zonal boundaries, in: Palaeoecology and Biostratigraphy of Graptolites (C. P. Hughes and R. B. Rickards, eds.), pp. 103-113, Geological Society Special Publication No. 20.Google Scholar
  20. Gould, S. J., 1977, Ontogeny and Phylogeny, Harvard University Press, Cambridge.Google Scholar
  21. Harvell, C. D., and Grosberg, R. K., in press, The timing of sexual maturity in clonal organisms, Am. Nat. (in press).Google Scholar
  22. Haven, N. D., 1971, Temporal patterns of sexual and asexual reproduction in the colonial ascidian Metandrocarpa taylori Huntsman, Biol. Bull. 140: 400–415.CrossRefGoogle Scholar
  23. Hickey, D. R., 1987, Skeletal structure, development and elemental composition of the Trepostome bryozoan Peronopora Palaeontology 30(4):691–716.Google Scholar
  24. Hickey, D. R., 1988, The role of astogeny in the evolutionary origins and systematics of Paleozoic Bryozoa: An example from the Trepostome bryozoan Peronopora, J. Paleontol. 62(2):180–203.Google Scholar
  25. Highsmith, R. C., 1982, Reproduction by fragmentation in corals, Mar. Ecol. Progr. Ser. 7: 207–226.CrossRefGoogle Scholar
  26. Jackson, J. B. C., 1979, Morphological strategies of sessile organisms, in: Biology and Systematics of Colonial Organisms (G. Larwood and B. R. Rosen, eds.), pp. 499-555, Systematics Association Special Volume 11.Google Scholar
  27. Jackson, J. B. C., and Hughes, T. P., 1985, Adaptive strategies of coral-reef invertebrates, Am. Sci. 73: 265–274.Google Scholar
  28. Jebram, D., 1973, The importance of different growth directions in the Phylactolaemata and Gymnolaemata for reconstructing the phylogeny of the Bryozoa, in: Living and Fossil Bryozoa (G. Larwood, ed.), pp. 565–576, Academic Press, London.Google Scholar
  29. Lang, W. D., 1904, The Jurassic forms of the ‘genera’ Stomatopora and Proboscina, Geol. Mag. 1: 315–322.CrossRefGoogle Scholar
  30. Larwood, G. P., and Taylor, P. D., 1979, Early structural and ecological diversification in the bryozoa, in: The Origin of Major Invertebrate Groups: (M. R. House, ed.), pp. 209-234, Systematics Association Special Volume 12.Google Scholar
  31. Lidgard, S., 1986, Ontogeny in animal colonies: A persistent trend in the bryozoan fossil record, Science 232: 230–232.PubMedCrossRefGoogle Scholar
  32. McNamara, K. J., 1986, A guide to the nomenclature of heterochrony, J. Paleontol. 60(l):4–13.Google Scholar
  33. Mitchell, C. E., 1986, Morphometric studies of Climacograptus (Hall) and the phylogenetic significance of astogeny, in: Palaeoecology and Biostratigraphy of Graptolites (C. P. Hughes and R. B. Rickards, eds.) pp. 119-129, Geological Society Special Publication No. 20.Google Scholar
  34. Oliver, W. A., Jr., 1975, Dimorphism in Two New Genera of Devonian Tabulate Corals, U. S. Geological Survey Professional Paper 743-D.Google Scholar
  35. Packham, G. H., 1962, Some diplograptids from the British Lower Silurian, Palaeontology 5: 498–526.Google Scholar
  36. Pandolfi, J. M., 1984a, Evidence of heterochrony in early tabulate corals, in: Geological Society of America, Abstracts with Programs, Vol. 16, No. 6, p. 617.Google Scholar
  37. Pandolfi, J. M., 1984b, Environmental influence on growth form in some massive tabulate corals from the Hamilton Group (Middle Devonian) of New York State, Palaeontogr. Am. 54: 538–542.Google Scholar
  38. Pandolfi, J. M., 1987, Paleobiological studies of colonial marine animals, Ph.D. dissertation, University of California, Davis.Google Scholar
  39. Prezbindowski, D. R., and Anstey, R. L., 1978, A Fourier-numerical study of a bryozoan fauna from the Threeforks Formation (Late Devonian) of Montana, J. Paleontol. 52(2): 353–369.Google Scholar
  40. Rickards, R. B., 1977, Patterns of evolution in the graptolites, in: Patterns of Evolution, As Illustrated by the Fossil Record (A. Hallam, ed.), pp. 333–358, Elsevier, New York.CrossRefGoogle Scholar
  41. Rickards, R. B., Hutt, J. E., and Berry, W. B. N., 1976, The evolution of the Silurian and Devonian graptoloids, Bull. Br. Mus. Nat. Hist. 28(l):l–120.Google Scholar
  42. Rigby, J. K., and Hintze, L. F., 1977, Early Middle Ordovician corals from western Utah, Utah Geol. 4(2): 105–111.Google Scholar
  43. Rosen, B. R., 1986, Modular growth and form of corals: A matter of metamers?, Phil. Trans. R. Soc. Lond. B 113: 115–142.CrossRefGoogle Scholar
  44. Ryland, J. S., 1981, Colonies, growth and reproduction, in: Recent and Fossil Bryozoa (G. P. Larwood and C. Nielsen, eds.), pp. 221–226.Google Scholar
  45. Schopf, T. J. M., 1977, Patterns and themes of evolution among the Bryozoa, in: Patterns of Evolution, As Illustrated by the Fossil Record (A. Hallam, ed.), pp. 159–207, Elsevier, New York.CrossRefGoogle Scholar
  46. Scrutton, C. T., 1984, Origin and early evolution of tabulate corals, Palaeontogr. Am. 54: 110–118.Google Scholar
  47. Scrutton, C. T., and Powell, J.H., 1980, Periodic development of dimetrism in some favositid corals, Acta Palaeontol Pol. 25(3–4):477–491.Google Scholar
  48. Stebbing, A. R. D., 1980, Increase in gonozooid frequency as an adaptive response to stress in Campanularia flexuosa, in: Developmental and Cellular Biology of Coelenterates (P. Tardent and R. Tardent, eds.), pp. 27–32, Elsevier, New York.Google Scholar
  49. Sudbury, M., 1958, Triangulate monograptids from the Monograptus gregarius zone of the Rheidol Gorge, R. Soc. Lond. Philos. Trans. B 241: 485–555.CrossRefGoogle Scholar
  50. Sugimoto, K., and Nakuachi, M., 1974, Budding, asexual reproduction, and regeneration in the colonial ascidian, Symplegama reptans, Biol. Bull. 147: 213–226.CrossRefGoogle Scholar
  51. Taylor, P. D., and Furness, R. W., 1978, Astogenetic and environmental variation of zooid size within colonies of Jurassic Stomatopora (Bryozoa, Cyclostomata), J. Paleontol. 52(5): 1093–1102.Google Scholar
  52. Thompson, D’A. W., 1917, On Growth and Form, Cambridge University Press, London.Google Scholar
  53. Urbanek, A., 1960, An attempt at biological interpretation of evolutionary changes in graptolite colonies, Acta Palaeontol. Pol. 5(2): 127–234.Google Scholar
  54. Urbanek, A., 1973, Organization and evolution of Graptolite colonies, in: Animal Colonies: Development and Function Through Time (R. S. Boardman, A. H. Cheetham, and W. A. Oliver, Jr., eds.), pp. 441–514, Dowden, Hutchison and Ross, Stroudsburg, Pennsylvania.Google Scholar
  55. Waern, B., 1948, in: Waern, B., Thorslund, P., Henningsmoen, G., and Save-Soderbergh, G., Deep boring through Ordovician and Silurian strata at Kinnekulle, Vestergotland, Bull. Geol. Inst. Univ. Uppsala 32: 337–474.Google Scholar
  56. Wahle, C. M., 1983, The role of age, size and injury in sexual reproduction among Jamaican gorgonians, Am. Zool. 23:961.Google Scholar
  57. Yamaguchi, M., 1975, Growth and reproductive cycles of the marine fouling ascidians Ciona intestinalis, Styela plicata, Botrylloides violaceous, and Leptoclinum mitsukurii at Abuatsubo-Moroiso Inlet (Central Japan), Mar. Biol. 29: 253–259.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1988

Authors and Affiliations

  • John M. Pandolfi
    • 1
  1. 1.Department of GeologyUniversity of CaliforniaDavisUSA

Personalised recommendations