Skip to main content

Heterochrony in Plants

The Intersection of Evolution Ecology and Ontogeny

  • Chapter
Heterochrony in Evolution

Part of the book series: Topics in Geobiology ((TGBI,volume 7))

Abstract

Phylogenetic changes in ontogenetic rates or timing are termed heterochrony. Evolutionary changes in organismal form necessarily arise from alterations in ontogenies, and so it is hardly surprising that heterochrony has profoundly affected the evolution of plants as well as animals. However, because the life cycles, body plans, and growth of plants and animals are so different, the effects of heterochrony are expressed differently in plants than they are in animals. The indeterminate or open growth habit and modular construction of plants lead to much greater environmentally induced phenotypic variation in form than is found in animals. Consequently, even though zoocentric theory has much to offer botanists, the study of heterochrony in plants must take on a character of its own.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abbe, E. C., Randolph, L. F., and Eisnet, J., 1941, The developmental relationship between shoot apex and growth pattern of leaf blade in diploid maize, Am. J. Bot. 28: 778–784.

    Google Scholar 

  • Alberch, P., Gould, S. J., Oster, G., and Wake, D. B., 1979, Size and shape in ontogeny and phylogeny. Paleobiology 5:296–317.

    Google Scholar 

  • Anderson, L. C., 1972, Studies in Bigelowia (Asteraceae), II. Xylary comparisons, woodiness, and paedomorphosis, J. Arnold Arb. 53: 499–514.

    Google Scholar 

  • Arroyo, M. T. Kalin, 1973, Chiasma frequency evidence on the evolution of autogamy in Limnanthes floccosa (Limnanthaceae), Evolution 27: 679–688.

    Google Scholar 

  • Bachmann, K., 1983, Evolutionary genetics and the genetic control of morphogenesis in flowering plants, in: Evolutionary Biology, Vol. 16 (M. K. Hecht, B. Wallace, and G. T. Prance, eds.), pp. 157–208, Plenum Press, New York.

    Google Scholar 

  • Bradshaw, A. D., 1965, Evolutionary significance of phenotypic plasticity in plants, Adv. Genet. 13: 115–155.

    Google Scholar 

  • Bruck, D. K., and Kaplan, D. R., 1980, Heterophyllic development in Muehlenbeckia (Polygonaceae), Am. J. Bot. 67(3): 337–346.

    Google Scholar 

  • Carlquist, S., 1962, A theory of paedomorphosis in dicotyledonous woods, Phytomorphology 12: 30–45.

    Google Scholar 

  • Chrysler, M. A., 1937, Persistent juveniles among the cycads, Bot. Gaz. 98: 696–710.

    Google Scholar 

  • Clay, K., 1982, Environmental and genetic determinates of cleistogamy in a natural population of the grass Danthonia spicata, Evolution 36(4):734–741.

    Google Scholar 

  • Coyne, J. A., and Lande, R., 1985, The genetic basis of species differences in plants, Am. Nat. 126: 141–145.

    Google Scholar 

  • Crotty, W. J., 1955, Trends in the pattern of primordial development with age in the fern Acrostichum danaefolium, Am. J. Bot. 42: 627–636.

    Google Scholar 

  • Cumbie, G. B., 1963, The vascular cambium and xylem development in Hisbiscus lasiocarpus, Am. J. Bot. 50: 944–951.

    Google Scholar 

  • Cumbie, G. B., 1967a, Developmental changes in the vascular cambium in Leitneria floridana, Am. J. Bot. 54:414–424.

    Google Scholar 

  • Cumbie, G. B., 1967b, Development and structure of the xylem in Canavalia (Leguminosae), Bull. Torrey Bot. Club 94: 162–175.

    Google Scholar 

  • Cutter, E. G., 1955, Experimental and analytical studies of Pteridophytes XXIX. The effect of progressive starvation on the growth and organization of the shoot apex of Dryopteris aristata Druce, Ann. Bot. 19: 485–499.

    Google Scholar 

  • De Beer, G. R., 1930, Embryology and Evolution, Clarendon Press, Oxford.

    Google Scholar 

  • Dickinson, T. A., 1978, Epiphylly in angiosperms, Bot. Rev. 44: 181–232.

    Google Scholar 

  • Foster, A. S., and Gifford, E. M., Jr., 1974, Comparative Morphology of Vascular Plants, Freeman, San Francisco.

    Google Scholar 

  • Ghiselin, M. T., 1980, The failure of morphology to assimilate Darwinism, in: The Evolutionary Synthesis, Perspectives on the Unification of Biology (E. Mayr and W. B. Provine, eds.), pp. 180–193, Harvard University Press, Cambridge.

    Google Scholar 

  • Gibson, A. C., 1973, Wood anatomy of Cactoideae (Cactaceae), Biotropica 5: 29–65.

    Google Scholar 

  • Goebel, K., 1900, Organography of Plants Especially of the Archegoniatae and Spermaphyta. Part 1. General Organography, Clarendon Press, Oxford.

    Google Scholar 

  • Gottlieb, L. D., 1984, Genetics and morphological evolution in plants, Am. Nat. 123: 681–709.

    Google Scholar 

  • Gottlieb, L. D., 1985, Reply to Coyne and Lande, Am. Nat. 126: 146–150.

    Google Scholar 

  • Gould, S. J., 1977, Ontogeny and Phylogeny, Harvard University Press, Cambridge.

    Google Scholar 

  • Grafius, J. E., 1978, Multiple characters and correlated response, Crop Sci. 18: 931–934.

    Google Scholar 

  • Guerrant, E. O., Jr., 1982, Neotenic evolution of Delphinium nudicaule (Ranunculaceae): A hummingbird-pollinated larkspur, Evolution 36(4):699–712.

    Google Scholar 

  • Guerrant, E. O., Jr., 1984, The role of ontogeny in the evolution and ecology of selected species of Delphinium and Limnanthes, Ph. D. dissertation, University of California, Berkeley.

    Google Scholar 

  • Hall, B. K., 1984, Developmental processes underlying heterochrony as an evolutionary mechanism, Can. J. Zool. 62: 1–7.

    Google Scholar 

  • Hallé, E., and Oldeman, R. A. A., 1970, Essai sur l’architecture et la dynamique de croissance des arbes tropicaux, Masson, Paris.

    Google Scholar 

  • Hallé, F., Oldeman, R. A. A., and Tomlinson, P. B., 1978, Tropical Trees and Forests—An Architectural Analysis, Springer-Verlag, Berlin.

    Google Scholar 

  • Hammond, D., 1941a, The expression of genes for leaf shape in Gossypium hirsutum L. and Gossypium arboreum L. I. The expression of genes for leaf shape in Gossypium hirsutum L., Am J. Bot. 28(1): 124–138.

    Google Scholar 

  • Hammond, D., 1941b, The expression of genes for leaf shape in Gossypium hirsutum L. and Gossypium arboreum L. II. The expression of genes for leaf shape in Gossypium arboreum L., Am. J. Bot. 28(1): 138–150.

    Google Scholar 

  • Harper, J. L., and White, J., 1974, The demography of plants, Annu. Rev. Ecol. Syst. 5: 419–463.

    Google Scholar 

  • Hilu, K. W., 1983, The role of single-gene mutations in the evolution of flowering plants, in: Evolutionary Biology, Vol. 16 (M. K. Hecht, B. Wallace, and G. T. Prance, eds.), pp. 97–128, Plenum Press, New York.

    Google Scholar 

  • Houghtaling, H. B., 1935, A developmental analysis of size and shape in tomato fruits, Bull. Torrey Bot. Club 62(5): 243–251.

    Google Scholar 

  • Huxley, J. S., 1932, Problems of Relative Growth, MacVeagh, London.

    Google Scholar 

  • Jain, S. K., 1979, Adaptive strategies: Polymorphism, plasticity and homeostasis, in: Topics in Plant Population Biology (O. T. Solbrig, S. K. Jain, G. B. Johnson, and P. H. Raven, eds.), pp. 160–187, Columbia University Press, New York.

    Google Scholar 

  • Jefferies, R. L., 1984, The phenotype: Its development, physiological constraints, and environmental signals, in: Perspectives on Plant Population Ecology (R. Dirzo and J. Sarukhan, eds.), pp. 347–358, Sinauer, Sunderland, Massachusetts.

    Google Scholar 

  • Kaiser, S., 1935, The factors governing shape and size inCapsicum fruits: A genetic and developmental analysis, Bull. Torrey Bot. Club 62: 433–454.

    Google Scholar 

  • Kaplan, D. R., 1973, Comparative developmental analysis of the heteroblastic leaf series of axillary shoots of Acorus calamus L. (Araceae), La Cellule 69(3): 253–290.

    Google Scholar 

  • Kaplan, D. R., 1980, Heteroblastic leaf development in Acacia Morphological and morphogenetic implications, La Cellule 73(2): 137–203.

    Google Scholar 

  • Kaplan, D. R., 1984, The concept of homology and its central role in the elucidation of plant systematic relationships, in: Cladistics: Perspective on the Reconstruction of Evolutionary History (T. Steussy and T. Duncan, eds.), pp. 51–70, Columbia University Press, New York.

    Google Scholar 

  • Larson, A., 1980, Paedomorphosis in relation to rates of morphological evolution in the salamander Aneides flavipunctatus (Amphibia, Plethodontidae), Evolution 34(1): 1–17.

    CAS  Google Scholar 

  • Letham, D. S., Goodwin, P. B., and Higgins, T. J. V., 1978, Phytohormones and Related Compounds: A Comprehensive Treatise, Vol. II, Elsevier/North-Holland, Oxford.

    Google Scholar 

  • Lindman, C. A. M., 1908, Ueber das Bluten von Lamium amplexicaule L., Ark. Bot. 8: 1–25.

    Google Scholar 

  • Lloyd, D. G., 1965, Evolution of self compatibility and racial differentiation in Leavenworthia (Cruciferae), Contrib. Gray Herb. 195: 3–195.

    Google Scholar 

  • Lord, E. M., 1979, The development of cleistogamous and chasmogamous flowers in Lamium amplexicaule (Labiatae): An example of heteroblastic infloresence development, Bot. Gaz. 140: 39–50.

    Google Scholar 

  • Lord, E. M., 1980, An anatomical basis for the divergent floral forms in the cleistogamous species, Lamium amplexicaule L. (Labiatae), Am. J. Bot. 67: 1430–1441.

    Google Scholar 

  • Lord, E. M., 1981, Cleistogamy: A tool for the study of floral morphogenesis, function and evolution, Bot Rev. 47: 421–449.

    Google Scholar 

  • Lord, E. M., 1982, Floral morphogenesis in Lamium amplexicause L. (Labiatae) with a model for the evolution of the cleistogamous flower, Bot. Gaz. 143: 63–72.

    Google Scholar 

  • Lord, E. M., 1984, Cleistogamy: A comparative study of intraspecific floral variation, in: Contemporary Problems in Plant Anatomy (R. A. White and W. C. Dickison, eds.), pp. 451–494, Academic Press, New York.

    Google Scholar 

  • Mayers, A. M., and Lord, E. M., 1983, Comparative flower development in the cleistogamous species Viola odorata. II. An organographic study, Am. J. Bot. 70(10): 1556–1563.

    Google Scholar 

  • McNeill, C. I., and Jain, S. K., 1983, Genetic differentiation studies and phylogenetic inference in the plant genus Limnanthes (section Inflexae), Theor. Appl. Genet. 66: 257–269.

    Google Scholar 

  • Melet, L. S., 1968, The phenomenon of paedomorphosis in the secondary wood of some cushionplants of the eastern Pamir [in Russian], Izv. Div. Biol. Sci. Takjikistan Acad. Sci. 2: 19–22.

    Google Scholar 

  • Minter, T. C., and Lord, E. M., 1983, A comparison of cleistogamous and chasmogamous floral development in Collomia grandiflora Dougl. ex Lindl. (Polemoniaceae), Am. J. Bot. 70(10): 1499–1508.

    Google Scholar 

  • Mishler, B. D., 1986, Ontogeny and phylogeny in Tortula (Musci: Pottiaceae), Syst. Bot. 11(1): 189–208.

    Google Scholar 

  • Mishler, B. D., and Churchill, S. P., 1984, A cladistic approach to the phylogeny of the “bryophytes,” Brittania 36:406–424.

    Google Scholar 

  • Mishler, B.D., and Churchill, S. P., 1985, Transition to a land flora: Phylogenetic relationships of the green algae and bryophytes, Cladistics 1(4): 305–328.

    Google Scholar 

  • Moore, D. M., and Lewis, H., 1965, The evolution of self-pollination in Clarkia xantiana, Evolution 19: 104–114.

    Google Scholar 

  • Mueller, R. J., 1982, Shoot ontogeny and the comparative development of the heteroblastic leaf series in Lygodium japonicum (Thunb.) SW, Bot. Gaz. 143(4): 424–438.

    Google Scholar 

  • Ornduff, R., 1969, Reproductive biology in relation to systematics, Taxon 18: 121–133.

    Google Scholar 

  • Owen, R., 1843, Lectures on the comparative anatomy and physiology of the invertebrate animals, delivered at the Royal College of Surgeons in 1843, Longmans, Brown, Green, and Longmans, London.

    Google Scholar 

  • Owen, R., 1848, On the Archetype and Homologies of the Vertebrate Skeleton, R. and J. E. Taylor, London.

    Google Scholar 

  • Philipson, W. R., and Butterfield, B. G., 1967, A theory of the causes of size variation in wood elements, Phytomorphology 17: 155–159.

    Google Scholar 

  • Prévost, M. F., 1978, Modular construction and its distribution in tropical woody plants, in: Tropical Trees As Living Systems (P. B. Tomlinson and M. H. Zimmerman, eds.), pp. 223–231, Cambridge University Press, Cambridge.

    Google Scholar 

  • Richards, J. H., and Barrett, S. C. H., 1984, The developmental basis of tistyly in Eichornia paniculata (Pontederiaceae), Am. J. Bot. 71(10): 1347–1363.

    Google Scholar 

  • Ritland, K., and Jain, S., 1984, The comparative life histories of two annual Limnanthes species in a temporally variable environment, Am. Nat. 124(5): 656–679.

    Google Scholar 

  • Roth, V. L., 1984, On homology, J. Linn. Soc. Biol. 22: 13–29.

    Google Scholar 

  • Sachs, T., 1982, A morphogenetic basis for plant morphology, in: Axioms and Principles of Plant Construction (R. Sattler, ed.), pp. 118–131, Nijhoff/Junk, The Hague.

    Google Scholar 

  • Sattler, R., 1966, Towards a more adequate approach to comparative morphology, Phytomorphology 16(4): 417–429.

    Google Scholar 

  • Sattler, R., 1984, Homology—A continuing challenge, Syst. Bot 9(4): 382–394.

    Google Scholar 

  • Scheiner, S. M., and Goodnight, C. J., 1984, The comparison of phenotypic plasticity and genetic variation in populations of the grass Danthonia spicata, Evolution 38(4):845–855.

    Google Scholar 

  • Sinnott, E. W., 1921, The relation between body size and organ size in plants, Am. Nat. 55: 385–403.

    Google Scholar 

  • Sinnott, E. W., 1927, A factorial analysis of certain shape characters in squash fruits, Am. Nat. 61:333–334.

    Google Scholar 

  • Sinnott, E. W., 1931, The independence of genetic factors governing size and shape, J. Hered. 22:381–387.

    Google Scholar 

  • Sinnott, E. W., 1935, Evidence for the existence of genes controlling shape, Genetics 20: 12–21.

    PubMed  CAS  Google Scholar 

  • Sinnott, E. W., 1936, A developmental analysis of inherited shape differences in Cucurbit fruits, Am. Nat. 70: 245–254.

    Google Scholar 

  • Sinnott, E. W., 1963, The Problem of Organic Form, Yale University Press, New Haven.

    Google Scholar 

  • Sinnott, E. W., and Dunn, L. C., 1935, The effect of genes on the development of size and form, Rev. Camb. Philos. Soc. 10: 123–151.

    Google Scholar 

  • Sinnott, E. W., and Kaiser, S., 1934, Two types of genetic control over the development of shape, Bull. Torrey Bot. Club 61(l):l–7.

    Google Scholar 

  • Smith, B. H., 1983, Demography of Floerkea proserpinacoides, a forest floor annual. I Density-dependent growth and mortality, J. Ecol. 71: 391–404.

    Google Scholar 

  • Solbrig, O. T., and Rollins, R. C., 1977, The evolution of autogamy in species of the mustard genus Leavenworthia Evolution 31:265–281.

    Google Scholar 

  • Stearns, S. C., 1982, The role of development in the evolution of life histories, in: Evolution and Development (J. T. Bonner, ed.), pp. 237–258, Springer-Verlag, Berlin.

    Google Scholar 

  • Stebbins, G. L., 1974, Flowering Plants. Evolution above the Species Level, Harvard University Press, Cambridge.

    Google Scholar 

  • Stevens, P. F., 1984, Homology and phylogeny: Morphology and systematics, Syst. Bot. 9(4): 395–409.

    Google Scholar 

  • Stone, D. E., Sellers, S. C., and Kress, W. J., 1981, Ontogenetic and evolutionary implications of a neotenous exine in Tapeinochilos (Zingiberales: Costaceae) pollen, Am. J. Bot. 68(l):49–63.

    Google Scholar 

  • Sultan, S. E., 1987, Evolutionary implications of phenotypic plasticity in plants, in: Evolutionary Biology, Vol. 21 (M. K. Hecht, B. Wallace, and G. T. Prance, eds.), pp. 127–178, Springer Science+Business Media New York.

    Google Scholar 

  • Takhtajan, A., 1943, Correlations of ontogenesis and phylogenesis in higher plants [in Russian with English summary], Tr. Erevansk. Gos. Univ. 22: 71–176.

    Google Scholar 

  • Takhtajan, A., 1954, Essays on the Evolutionary Morphology of Plants 1959. American Institute of Biological Sciences, Arlington, Virginia.

    Google Scholar 

  • Takhtajan, A., 1972, Patterns of ontogenetic alterations in the evolution of higher plants, Phytomorphology 22(2): 164–171.

    Google Scholar 

  • Takhtajan, A., 1976, Neoteny and the origin of flowering plants, in: Origin and Early Evolution of Angiosperms (C. B. Beck, ed.), pp. 207–219, Columbia University Press, New York.

    Google Scholar 

  • Tomlinson, P. B., 1970, Monocotyledons—Toward an understanding of their morphology and anatomy, in: Advances in Botanical Research, Vol. 3 (R. D. Preston, ed.), pp. 207–292, Academic Press, New York.

    Google Scholar 

  • Tomlinson, P. B., 1978, Branching and axis differentiation in tropical trees, in: Tropical Trees As Living Systems (P. B. Tomlinson and M. H. Zimmerman, eds.), pp. 187–207, Cambridge University Press, Cambridge.

    Google Scholar 

  • Tomlinson, P. B., 1982, Chance and design in the construction of plants, in: Axioms and Principles of Plant Construction (R. Sattler, ed.), pp. 162–183, Nijhoff/Junk, The Hague.

    Google Scholar 

  • Tomlinson, P. B., 1984a, Homology in modular organisms—concepts and consequences, Introduction, Syst. Bot. 9(4):373.

    Google Scholar 

  • Tomlinson, P. B., 1984b, Homology: An empirical view, Syst. Bot. 9(4): 374–381.

    Google Scholar 

  • Van Valen, L. M., 1974, A natural model for the origin of some higher taxa, J. Herpetol. 8: 109–121.

    Google Scholar 

  • Van Valen, L. M., 1982, Homology and causes, J. Morphol. 173: 305–312.

    PubMed  Google Scholar 

  • Von Maltzahn, K. E., 1957, A study of size differences in two strains of Cucurbita pepo L., Can. J. Bot. 35: 809–832.

    Google Scholar 

  • Wareing, P. F., and Phillips, I. D. J., 1981, Growth and Differentiation in Plants, 3rd ed., Pergamon Press, Oxford.

    Google Scholar 

  • Whaley, W. G., 1939, The relation of organ size to meristem size in the tomato, Am. Soc. Horticuit. Sci. 37: 910–912.

    Google Scholar 

  • White, J., 1984, Plant metamerism, in: Perspectives on Plant Population Ecology (R. Dirzo and J. Sarukhan, eds.), pp. 15–47, Sinauer, Sunderland, Massachusetts.

    Google Scholar 

  • Wulff, R. D., 1985, Effect of seed size on heteroblastic development in seedings of Desmodium paniculatum, Am. J. Bot. 72(11):1684–1686.

    Google Scholar 

  • Wyatt, R., 1983, Pollinator-plant interactions and the evolution of breeding systems, in: Pollination Biology (L. Real, ed.), pp. 51–95, Academic Press, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer Science+Business Media New York

About this chapter

Cite this chapter

Guerrant, E.O. (1988). Heterochrony in Plants. In: McKinney, M.L. (eds) Heterochrony in Evolution. Topics in Geobiology, vol 7. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0795-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0795-0_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-0797-4

  • Online ISBN: 978-1-4899-0795-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics