Heterochrony in Plants

The Intersection of Evolution Ecology and Ontogeny
  • Edward O. GuerrantJr.
Part of the Topics in Geobiology book series (TGBI, volume 7)


Phylogenetic changes in ontogenetic rates or timing are termed heterochrony. Evolutionary changes in organismal form necessarily arise from alterations in ontogenies, and so it is hardly surprising that heterochrony has profoundly affected the evolution of plants as well as animals. However, because the life cycles, body plans, and growth of plants and animals are so different, the effects of heterochrony are expressed differently in plants than they are in animals. The indeterminate or open growth habit and modular construction of plants lead to much greater environmentally induced phenotypic variation in form than is found in animals. Consequently, even though zoocentric theory has much to offer botanists, the study of heterochrony in plants must take on a character of its own.


Relative Growth Rate Shoot Apical Meristem Secondary Xylem Vascular Cambium Primary Xylem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abbe, E. C., Randolph, L. F., and Eisnet, J., 1941, The developmental relationship between shoot apex and growth pattern of leaf blade in diploid maize, Am. J. Bot. 28: 778–784.Google Scholar
  2. Alberch, P., Gould, S. J., Oster, G., and Wake, D. B., 1979, Size and shape in ontogeny and phylogeny. Paleobiology 5:296–317.Google Scholar
  3. Anderson, L. C., 1972, Studies in Bigelowia (Asteraceae), II. Xylary comparisons, woodiness, and paedomorphosis, J. Arnold Arb. 53: 499–514.Google Scholar
  4. Arroyo, M. T. Kalin, 1973, Chiasma frequency evidence on the evolution of autogamy in Limnanthes floccosa (Limnanthaceae), Evolution 27: 679–688.Google Scholar
  5. Bachmann, K., 1983, Evolutionary genetics and the genetic control of morphogenesis in flowering plants, in: Evolutionary Biology, Vol. 16 (M. K. Hecht, B. Wallace, and G. T. Prance, eds.), pp. 157–208, Plenum Press, New York.Google Scholar
  6. Bradshaw, A. D., 1965, Evolutionary significance of phenotypic plasticity in plants, Adv. Genet. 13: 115–155.Google Scholar
  7. Bruck, D. K., and Kaplan, D. R., 1980, Heterophyllic development in Muehlenbeckia (Polygonaceae), Am. J. Bot. 67(3): 337–346.Google Scholar
  8. Carlquist, S., 1962, A theory of paedomorphosis in dicotyledonous woods, Phytomorphology 12: 30–45.Google Scholar
  9. Chrysler, M. A., 1937, Persistent juveniles among the cycads, Bot. Gaz. 98: 696–710.Google Scholar
  10. Clay, K., 1982, Environmental and genetic determinates of cleistogamy in a natural population of the grass Danthonia spicata, Evolution 36(4):734–741.Google Scholar
  11. Coyne, J. A., and Lande, R., 1985, The genetic basis of species differences in plants, Am. Nat. 126: 141–145.Google Scholar
  12. Crotty, W. J., 1955, Trends in the pattern of primordial development with age in the fern Acrostichum danaefolium, Am. J. Bot. 42: 627–636.Google Scholar
  13. Cumbie, G. B., 1963, The vascular cambium and xylem development in Hisbiscus lasiocarpus, Am. J. Bot. 50: 944–951.Google Scholar
  14. Cumbie, G. B., 1967a, Developmental changes in the vascular cambium in Leitneria floridana, Am. J. Bot. 54:414–424.Google Scholar
  15. Cumbie, G. B., 1967b, Development and structure of the xylem in Canavalia (Leguminosae), Bull. Torrey Bot. Club 94: 162–175.Google Scholar
  16. Cutter, E. G., 1955, Experimental and analytical studies of Pteridophytes XXIX. The effect of progressive starvation on the growth and organization of the shoot apex of Dryopteris aristata Druce, Ann. Bot. 19: 485–499.Google Scholar
  17. De Beer, G. R., 1930, Embryology and Evolution, Clarendon Press, Oxford.Google Scholar
  18. Dickinson, T. A., 1978, Epiphylly in angiosperms, Bot. Rev. 44: 181–232.Google Scholar
  19. Foster, A. S., and Gifford, E. M., Jr., 1974, Comparative Morphology of Vascular Plants, Freeman, San Francisco.Google Scholar
  20. Ghiselin, M. T., 1980, The failure of morphology to assimilate Darwinism, in: The Evolutionary Synthesis, Perspectives on the Unification of Biology (E. Mayr and W. B. Provine, eds.), pp. 180–193, Harvard University Press, Cambridge.Google Scholar
  21. Gibson, A. C., 1973, Wood anatomy of Cactoideae (Cactaceae), Biotropica 5: 29–65.Google Scholar
  22. Goebel, K., 1900, Organography of Plants Especially of the Archegoniatae and Spermaphyta. Part 1. General Organography, Clarendon Press, Oxford.Google Scholar
  23. Gottlieb, L. D., 1984, Genetics and morphological evolution in plants, Am. Nat. 123: 681–709.Google Scholar
  24. Gottlieb, L. D., 1985, Reply to Coyne and Lande, Am. Nat. 126: 146–150.Google Scholar
  25. Gould, S. J., 1977, Ontogeny and Phylogeny, Harvard University Press, Cambridge.Google Scholar
  26. Grafius, J. E., 1978, Multiple characters and correlated response, Crop Sci. 18: 931–934.Google Scholar
  27. Guerrant, E. O., Jr., 1982, Neotenic evolution of Delphinium nudicaule (Ranunculaceae): A hummingbird-pollinated larkspur, Evolution 36(4):699–712.Google Scholar
  28. Guerrant, E. O., Jr., 1984, The role of ontogeny in the evolution and ecology of selected species of Delphinium and Limnanthes, Ph. D. dissertation, University of California, Berkeley.Google Scholar
  29. Hall, B. K., 1984, Developmental processes underlying heterochrony as an evolutionary mechanism, Can. J. Zool. 62: 1–7.Google Scholar
  30. Hallé, E., and Oldeman, R. A. A., 1970, Essai sur l’architecture et la dynamique de croissance des arbes tropicaux, Masson, Paris.Google Scholar
  31. Hallé, F., Oldeman, R. A. A., and Tomlinson, P. B., 1978, Tropical Trees and Forests—An Architectural Analysis, Springer-Verlag, Berlin.Google Scholar
  32. Hammond, D., 1941a, The expression of genes for leaf shape in Gossypium hirsutum L. and Gossypium arboreum L. I. The expression of genes for leaf shape in Gossypium hirsutum L., Am J. Bot. 28(1): 124–138.Google Scholar
  33. Hammond, D., 1941b, The expression of genes for leaf shape in Gossypium hirsutum L. and Gossypium arboreum L. II. The expression of genes for leaf shape in Gossypium arboreum L., Am. J. Bot. 28(1): 138–150.Google Scholar
  34. Harper, J. L., and White, J., 1974, The demography of plants, Annu. Rev. Ecol. Syst. 5: 419–463.Google Scholar
  35. Hilu, K. W., 1983, The role of single-gene mutations in the evolution of flowering plants, in: Evolutionary Biology, Vol. 16 (M. K. Hecht, B. Wallace, and G. T. Prance, eds.), pp. 97–128, Plenum Press, New York.Google Scholar
  36. Houghtaling, H. B., 1935, A developmental analysis of size and shape in tomato fruits, Bull. Torrey Bot. Club 62(5): 243–251.Google Scholar
  37. Huxley, J. S., 1932, Problems of Relative Growth, MacVeagh, London.Google Scholar
  38. Jain, S. K., 1979, Adaptive strategies: Polymorphism, plasticity and homeostasis, in: Topics in Plant Population Biology (O. T. Solbrig, S. K. Jain, G. B. Johnson, and P. H. Raven, eds.), pp. 160–187, Columbia University Press, New York.Google Scholar
  39. Jefferies, R. L., 1984, The phenotype: Its development, physiological constraints, and environmental signals, in: Perspectives on Plant Population Ecology (R. Dirzo and J. Sarukhan, eds.), pp. 347–358, Sinauer, Sunderland, Massachusetts.Google Scholar
  40. Kaiser, S., 1935, The factors governing shape and size inCapsicum fruits: A genetic and developmental analysis, Bull. Torrey Bot. Club 62: 433–454.Google Scholar
  41. Kaplan, D. R., 1973, Comparative developmental analysis of the heteroblastic leaf series of axillary shoots of Acorus calamus L. (Araceae), La Cellule 69(3): 253–290.Google Scholar
  42. Kaplan, D. R., 1980, Heteroblastic leaf development in Acacia Morphological and morphogenetic implications, La Cellule 73(2): 137–203.Google Scholar
  43. Kaplan, D. R., 1984, The concept of homology and its central role in the elucidation of plant systematic relationships, in: Cladistics: Perspective on the Reconstruction of Evolutionary History (T. Steussy and T. Duncan, eds.), pp. 51–70, Columbia University Press, New York.Google Scholar
  44. Larson, A., 1980, Paedomorphosis in relation to rates of morphological evolution in the salamander Aneides flavipunctatus (Amphibia, Plethodontidae), Evolution 34(1): 1–17.Google Scholar
  45. Letham, D. S., Goodwin, P. B., and Higgins, T. J. V., 1978, Phytohormones and Related Compounds: A Comprehensive Treatise, Vol. II, Elsevier/North-Holland, Oxford.Google Scholar
  46. Lindman, C. A. M., 1908, Ueber das Bluten von Lamium amplexicaule L., Ark. Bot. 8: 1–25.Google Scholar
  47. Lloyd, D. G., 1965, Evolution of self compatibility and racial differentiation in Leavenworthia (Cruciferae), Contrib. Gray Herb. 195: 3–195.Google Scholar
  48. Lord, E. M., 1979, The development of cleistogamous and chasmogamous flowers in Lamium amplexicaule (Labiatae): An example of heteroblastic infloresence development, Bot. Gaz. 140: 39–50.Google Scholar
  49. Lord, E. M., 1980, An anatomical basis for the divergent floral forms in the cleistogamous species, Lamium amplexicaule L. (Labiatae), Am. J. Bot. 67: 1430–1441.Google Scholar
  50. Lord, E. M., 1981, Cleistogamy: A tool for the study of floral morphogenesis, function and evolution, Bot Rev. 47: 421–449.Google Scholar
  51. Lord, E. M., 1982, Floral morphogenesis in Lamium amplexicause L. (Labiatae) with a model for the evolution of the cleistogamous flower, Bot. Gaz. 143: 63–72.Google Scholar
  52. Lord, E. M., 1984, Cleistogamy: A comparative study of intraspecific floral variation, in: Contemporary Problems in Plant Anatomy (R. A. White and W. C. Dickison, eds.), pp. 451–494, Academic Press, New York.Google Scholar
  53. Mayers, A. M., and Lord, E. M., 1983, Comparative flower development in the cleistogamous species Viola odorata. II. An organographic study, Am. J. Bot. 70(10): 1556–1563.Google Scholar
  54. McNeill, C. I., and Jain, S. K., 1983, Genetic differentiation studies and phylogenetic inference in the plant genus Limnanthes (section Inflexae), Theor. Appl. Genet. 66: 257–269.Google Scholar
  55. Melet, L. S., 1968, The phenomenon of paedomorphosis in the secondary wood of some cushionplants of the eastern Pamir [in Russian], Izv. Div. Biol. Sci. Takjikistan Acad. Sci. 2: 19–22.Google Scholar
  56. Minter, T. C., and Lord, E. M., 1983, A comparison of cleistogamous and chasmogamous floral development in Collomia grandiflora Dougl. ex Lindl. (Polemoniaceae), Am. J. Bot. 70(10): 1499–1508.Google Scholar
  57. Mishler, B. D., 1986, Ontogeny and phylogeny in Tortula (Musci: Pottiaceae), Syst. Bot. 11(1): 189–208.Google Scholar
  58. Mishler, B. D., and Churchill, S. P., 1984, A cladistic approach to the phylogeny of the “bryophytes,” Brittania 36:406–424.Google Scholar
  59. Mishler, B.D., and Churchill, S. P., 1985, Transition to a land flora: Phylogenetic relationships of the green algae and bryophytes, Cladistics 1(4): 305–328.Google Scholar
  60. Moore, D. M., and Lewis, H., 1965, The evolution of self-pollination in Clarkia xantiana, Evolution 19: 104–114.Google Scholar
  61. Mueller, R. J., 1982, Shoot ontogeny and the comparative development of the heteroblastic leaf series in Lygodium japonicum (Thunb.) SW, Bot. Gaz. 143(4): 424–438.Google Scholar
  62. Ornduff, R., 1969, Reproductive biology in relation to systematics, Taxon 18: 121–133.Google Scholar
  63. Owen, R., 1843, Lectures on the comparative anatomy and physiology of the invertebrate animals, delivered at the Royal College of Surgeons in 1843, Longmans, Brown, Green, and Longmans, London.Google Scholar
  64. Owen, R., 1848, On the Archetype and Homologies of the Vertebrate Skeleton, R. and J. E. Taylor, London.Google Scholar
  65. Philipson, W. R., and Butterfield, B. G., 1967, A theory of the causes of size variation in wood elements, Phytomorphology 17: 155–159.Google Scholar
  66. Prévost, M. F., 1978, Modular construction and its distribution in tropical woody plants, in: Tropical Trees As Living Systems (P. B. Tomlinson and M. H. Zimmerman, eds.), pp. 223–231, Cambridge University Press, Cambridge.Google Scholar
  67. Richards, J. H., and Barrett, S. C. H., 1984, The developmental basis of tistyly in Eichornia paniculata (Pontederiaceae), Am. J. Bot. 71(10): 1347–1363.Google Scholar
  68. Ritland, K., and Jain, S., 1984, The comparative life histories of two annual Limnanthes species in a temporally variable environment, Am. Nat. 124(5): 656–679.Google Scholar
  69. Roth, V. L., 1984, On homology, J. Linn. Soc. Biol. 22: 13–29.Google Scholar
  70. Sachs, T., 1982, A morphogenetic basis for plant morphology, in: Axioms and Principles of Plant Construction (R. Sattler, ed.), pp. 118–131, Nijhoff/Junk, The Hague.Google Scholar
  71. Sattler, R., 1966, Towards a more adequate approach to comparative morphology, Phytomorphology 16(4): 417–429.Google Scholar
  72. Sattler, R., 1984, Homology—A continuing challenge, Syst. Bot 9(4): 382–394.Google Scholar
  73. Scheiner, S. M., and Goodnight, C. J., 1984, The comparison of phenotypic plasticity and genetic variation in populations of the grass Danthonia spicata, Evolution 38(4):845–855.Google Scholar
  74. Sinnott, E. W., 1921, The relation between body size and organ size in plants, Am. Nat. 55: 385–403.Google Scholar
  75. Sinnott, E. W., 1927, A factorial analysis of certain shape characters in squash fruits, Am. Nat. 61:333–334.Google Scholar
  76. Sinnott, E. W., 1931, The independence of genetic factors governing size and shape, J. Hered. 22:381–387.Google Scholar
  77. Sinnott, E. W., 1935, Evidence for the existence of genes controlling shape, Genetics 20: 12–21.PubMedGoogle Scholar
  78. Sinnott, E. W., 1936, A developmental analysis of inherited shape differences in Cucurbit fruits, Am. Nat. 70: 245–254.Google Scholar
  79. Sinnott, E. W., 1963, The Problem of Organic Form, Yale University Press, New Haven.Google Scholar
  80. Sinnott, E. W., and Dunn, L. C., 1935, The effect of genes on the development of size and form, Rev. Camb. Philos. Soc. 10: 123–151.Google Scholar
  81. Sinnott, E. W., and Kaiser, S., 1934, Two types of genetic control over the development of shape, Bull. Torrey Bot. Club 61(l):l–7.Google Scholar
  82. Smith, B. H., 1983, Demography of Floerkea proserpinacoides, a forest floor annual. I Density-dependent growth and mortality, J. Ecol. 71: 391–404.Google Scholar
  83. Solbrig, O. T., and Rollins, R. C., 1977, The evolution of autogamy in species of the mustard genus Leavenworthia Evolution 31:265–281.Google Scholar
  84. Stearns, S. C., 1982, The role of development in the evolution of life histories, in: Evolution and Development (J. T. Bonner, ed.), pp. 237–258, Springer-Verlag, Berlin.Google Scholar
  85. Stebbins, G. L., 1974, Flowering Plants. Evolution above the Species Level, Harvard University Press, Cambridge.Google Scholar
  86. Stevens, P. F., 1984, Homology and phylogeny: Morphology and systematics, Syst. Bot. 9(4): 395–409.Google Scholar
  87. Stone, D. E., Sellers, S. C., and Kress, W. J., 1981, Ontogenetic and evolutionary implications of a neotenous exine in Tapeinochilos (Zingiberales: Costaceae) pollen, Am. J. Bot. 68(l):49–63.Google Scholar
  88. Sultan, S. E., 1987, Evolutionary implications of phenotypic plasticity in plants, in: Evolutionary Biology, Vol. 21 (M. K. Hecht, B. Wallace, and G. T. Prance, eds.), pp. 127–178, Springer Science+Business Media New York.Google Scholar
  89. Takhtajan, A., 1943, Correlations of ontogenesis and phylogenesis in higher plants [in Russian with English summary], Tr. Erevansk. Gos. Univ. 22: 71–176.Google Scholar
  90. Takhtajan, A., 1954, Essays on the Evolutionary Morphology of Plants 1959. American Institute of Biological Sciences, Arlington, Virginia.Google Scholar
  91. Takhtajan, A., 1972, Patterns of ontogenetic alterations in the evolution of higher plants, Phytomorphology 22(2): 164–171.Google Scholar
  92. Takhtajan, A., 1976, Neoteny and the origin of flowering plants, in: Origin and Early Evolution of Angiosperms (C. B. Beck, ed.), pp. 207–219, Columbia University Press, New York.Google Scholar
  93. Tomlinson, P. B., 1970, Monocotyledons—Toward an understanding of their morphology and anatomy, in: Advances in Botanical Research, Vol. 3 (R. D. Preston, ed.), pp. 207–292, Academic Press, New York.Google Scholar
  94. Tomlinson, P. B., 1978, Branching and axis differentiation in tropical trees, in: Tropical Trees As Living Systems (P. B. Tomlinson and M. H. Zimmerman, eds.), pp. 187–207, Cambridge University Press, Cambridge.Google Scholar
  95. Tomlinson, P. B., 1982, Chance and design in the construction of plants, in: Axioms and Principles of Plant Construction (R. Sattler, ed.), pp. 162–183, Nijhoff/Junk, The Hague.Google Scholar
  96. Tomlinson, P. B., 1984a, Homology in modular organisms—concepts and consequences, Introduction, Syst. Bot. 9(4):373.Google Scholar
  97. Tomlinson, P. B., 1984b, Homology: An empirical view, Syst. Bot. 9(4): 374–381.Google Scholar
  98. Van Valen, L. M., 1974, A natural model for the origin of some higher taxa, J. Herpetol. 8: 109–121.Google Scholar
  99. Van Valen, L. M., 1982, Homology and causes, J. Morphol. 173: 305–312.PubMedGoogle Scholar
  100. Von Maltzahn, K. E., 1957, A study of size differences in two strains of Cucurbita pepo L., Can. J. Bot. 35: 809–832.Google Scholar
  101. Wareing, P. F., and Phillips, I. D. J., 1981, Growth and Differentiation in Plants, 3rd ed., Pergamon Press, Oxford.Google Scholar
  102. Whaley, W. G., 1939, The relation of organ size to meristem size in the tomato, Am. Soc. Horticuit. Sci. 37: 910–912.Google Scholar
  103. White, J., 1984, Plant metamerism, in: Perspectives on Plant Population Ecology (R. Dirzo and J. Sarukhan, eds.), pp. 15–47, Sinauer, Sunderland, Massachusetts.Google Scholar
  104. Wulff, R. D., 1985, Effect of seed size on heteroblastic development in seedings of Desmodium paniculatum, Am. J. Bot. 72(11):1684–1686.Google Scholar
  105. Wyatt, R., 1983, Pollinator-plant interactions and the evolution of breeding systems, in: Pollination Biology (L. Real, ed.), pp. 51–95, Academic Press, New York.Google Scholar

Copyright information

© Springer Science+Business Media New York 1988

Authors and Affiliations

  • Edward O. GuerrantJr.
    • 1
    • 2
  1. 1.Department of Botany and Plant PathologyOregon State UniversityCorvallisUSA
  2. 2.Department of BiologyLewis and Clark CollegePortlandUSA

Personalised recommendations