Skip to main content

Sclerochronology and the Size versus Age Problem

  • Chapter
Heterochrony in Evolution

Part of the book series: Topics in Geobiology ((TGBI,volume 7))

Abstract

The rekindling of interest surrounding the role of heterochrony in the evolution of life has produced many examples of paedomorphosis and peramorphosis among fossil taxa, attesting to the ubiquity of this phenomenon (McNamara, 1986, and this volume). Nevertheless, two significant problems are intimately associated with such heterochronic studies: (1) uncertainties of taxonomy and ancestor-descendant relationships (see Fink, this volume); and (2) the problem of assessing absolute age (and hence growth rate) throughout ontogeny. Whereas both problems may be significant when attempting to distinguish among the various heterochronic processes that might have operated in a particular case, it is my contention that sclerochronology can often help resolve the latter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alberch, P., Gould, S. J., Oster, G. F., and Wake, D. B., 1979, Size and shape in ontogeny and phylogeny, Paleobiology 5: 296–317.

    Google Scholar 

  • Barker, R. M., 1964, Microtextural variation in pelecypod shells, Malacologia 2: 69–86.

    Google Scholar 

  • Barker, R. M., 1970, Constituency and origins of cyclic growth layers in pelecypod shells, Ph.D. dissertation, University of California, Berkeley.

    Google Scholar 

  • Barnes, D. J., 1970, Coral skeletons: An explanation of their growth and structure, Science 170: 1305–1308.

    Article  PubMed  CAS  Google Scholar 

  • Bourget, E., 1980, Barnacle shell growth and its relationship to environmental factors, in: Skeletal Growth of Aquatic Organisms (D. C. Rhoads and R. A. Lutz, eds.), pp. 469–491, Plenum Press, New York.

    Google Scholar 

  • Bromage, T. G., and Dean, M. C., 1985, Re-evaluation of the age at death of immature fossil hominids, Nature 317: 525–527.

    Article  PubMed  CAS  Google Scholar 

  • Castanet, J., Muenier, F. J., and Ricqlès, A., 1977, L’enregistrement de la croissance cyclique par le tissu osseux chez les vertébrés poikilothermes: Données comparatives et essai de synthèse, Bull. Biol. Fr. Belg. 111: 183–202.

    Google Scholar 

  • Clark, G. R., 1974, Growth lines in invertebrate skeletons, Annu. Rev. Earth Planet. Sci. 2: 77–99.

    Article  Google Scholar 

  • Comfort, A., 1951, The pigmentation of molluscan shells, Biol. Rev. 26: 285–301.

    Article  CAS  Google Scholar 

  • De Beer, G. R., 1930, Embryology and Evolution, Clarendon Press, Oxford.

    Google Scholar 

  • De Beer, G. R., 1958, Embryos and Ancestors, Clarendon Press, Oxford.

    Google Scholar 

  • Dodd, J. R., and Stanton, R. J., Jr., 1981, Paleoecology, Concepts and Applications, Wiley, New York.

    Google Scholar 

  • Dodge, R. E., and Vaisnys, J. R., 1980, Skeletal growth chronologies of recent and fossil corals, in: Skeletal Growth of Aquatic Organisms (D. C. Rhoads and R. A. Lutz, eds.), pp. 493–517, Plenum Press, New York.

    Google Scholar 

  • Donner, J., and Nord, A. G., 1986, Carbon and oxygen stable isotope values in shells of Mytilus edulis and Modiolus modiolus from Holocene raised beaches at the outer coast of the Varanger Peninsula, north Norway, Palaeogeogr. Palaeoclimatol. Palaeoecol. 56: 35–50.

    Article  CAS  Google Scholar 

  • Emerson, S. B., 1986, Heterochrony and frogs: The relationship of a life history trait to morphologic form, Am. Nat. 127: 167–183.

    Article  Google Scholar 

  • Epstein, S., Buchsbaum, R., Lowenstam, H. A., and Urey, H. C., 1953, Revised carbonate-water isotopic temperature scale, Bull. Geol. Soc. Am. 64: 1315–1326.

    Article  CAS  Google Scholar 

  • Evans, J. W., 1972, Tidal growth increments in the cockleClinocardium nuttalli, Science 176: 416–417.

    Article  PubMed  CAS  Google Scholar 

  • Fritts, H. C., 1976, Tree Rings and Climate, Academic Press, New York.

    Google Scholar 

  • Gould, S. J., 1977, Ontogeny and Phylogeny, Harvard University Press, Cambridge.

    Google Scholar 

  • Hemelaar, A. S. M., and van Gelder, J. J., 1980, Annual growth rings in phalanges of Bufo bufo (Anura, Amphibia) from the Netherlands and their use for age determination, Neth. J. Zool. 30: 129–135.

    Article  Google Scholar 

  • Hitch, C. J., 1982, Dendrochronology and serendipity, Am. Sci. 70:300–305.

    Google Scholar 

  • Hudson, J. H., Shinn, E., Halley, R., and Lidz, B., 1976, Sclerochronology: A new tool for interpreting past environments, Geology 4: 361–364.

    Article  Google Scholar 

  • Hulbert, R. C., Jr., 1982, Population dynamics of the three-toed horse Neohipparion from the late Miocene of Florida, Paleobiology 8: 159–167.

    Google Scholar 

  • Hutton, J. M., 1986, Age determination of living Nile crocodiles from the cortical stratification of bone, Copeia 1986(2): 332–341.

    Article  Google Scholar 

  • Jones, C. B., 1981, Periodicities in stromatolite lamination from the early Proterozoic Hearne Formation, Great Slave Lake, Canada, Palaeontology 24: 231–250.

    Google Scholar 

  • Jones, D. S., 1981, Repeating layers in the molluscan shell are not always periodic, J. Paleontol. 55: 1076–1082.

    Google Scholar 

  • Jones, D. S., 1983, Sclerochronology: Reading the record of the molluscan shell, Am. Sci. 71: 384–391.

    Google Scholar 

  • Jones, D. S., 1985, Growth increments and geochemical variations in the molluscan shell, in: Mollusks: Notes for a Short Course (D. J. Bottjer, C. S. Hickman, and P. D. Ward, eds.), pp. 72–87, Paleontological Society and University of Tennessee, Knoxville.

    Google Scholar 

  • Jones, D. S., Williams, D. F., and Romanek, C. S., 1986, Life history of symbiont-bearing giant clams from stable isotope profiles, Science 231: 46–48.

    Article  PubMed  CAS  Google Scholar 

  • Jones, P., and Crisp, M., 1985, Microgrowth bands in chitons: Evidence of tidal periodicity, J. Moll. Stud. 51: 133–137.

    Google Scholar 

  • Jungers, W. L. (ed.), 1985, Size and Scaling in Primate Biology, Plenum Press, New York.

    Google Scholar 

  • Kennish, M. J., and Olsson, R. K., 1975, Effects of thermal discharges on the microstructural growth of Mercenaria mercenaria, Environ. Geol. 1: 41–64.

    Article  Google Scholar 

  • Klevezal, G. A., and Kleinenberg, S. E., 1967, Age Determination of Mammals from Annual Layers in Teeth and Bones, USSR Academy of Science, Severtsov Institute of Animal Morphology (Translated from Russian), U. S. Department of Commerce, Springfield, Virginia.

    Google Scholar 

  • Knutson, D. W., Buddemeier, R. W., and Smith, S. V., 1972, Coral chronometers: Seasonal growth bands in reef corals, Science 177: 270–272.

    Article  PubMed  CAS  Google Scholar 

  • Koch, P. L., and Fisher, D. C., 1986, Out of the mouths of mammoths: An isotopic signal of seasons in proboscidean tusks, in: Geological Society of America Annual Meeting, Abstracts with Program, Vol. 18, p. 660.

    Google Scholar 

  • Krantz, D. E., Jones, D. S., and Williams, D. F., 1984, Growth rates of the sea scallop, Placopecten magellanicus, determined from the 18O/16O record in shell calcite, Biol. Bull. 167: 186–199.

    Article  Google Scholar 

  • Landman, N. H., Rye, D. M., and Shelton, K. L., 1983, Early ontogeny of Eutrephoceras compared to Recent Nautilus and Mesozoic ammonites: Evidence from shell morphology and light stable isotopes, Paleobiology 9: 269–279.

    Google Scholar 

  • Larson, J. S., and Taber, R. D., 1980, Criteria of sex and age, in: Wildlife Management Techniques Manual, 4th ed. (S. D. Schemnitz, ed.), pp. 143–202, Wildlife Society, Washington, D.C.

    Google Scholar 

  • Lutz, R. A., and Rhoads, D. C., 1977, Anaerobiosis and a theory of growth line formation, Science 198: 1222–1227.

    Article  PubMed  CAS  Google Scholar 

  • Lutz, R. A., and Rhoads, D. C., 1980, Growth patterns within the molluscan shell: An overview, in: Skeletal Growth of Aquatic Organisms (D. C. Rhoads and R. A. Lutz, eds.), pp. 203–254, Plenum Press, New York.

    Google Scholar 

  • McKinney, M. L., 1984, Allometry and heterochrony in an Eocene echinoid lineage: Morphological change as a by-product of size selection, Paleobiology 10: 207–219.

    Google Scholar 

  • McNamara, K. J., 1986, A guide to the nomenclature of heterochrony, J. Paleontol. 60: 4–13.

    Google Scholar 

  • Meyer, F. O., 1981, Stromatoporoid growth rhythms and rates, Science 213: 894–895.

    Article  PubMed  CAS  Google Scholar 

  • Minakami, K., 1979, An estimation of age and life span of the genus Trimeresurus (Reptilia, Serpentes, Viperidae) on Amani Oshima Island, Japan, J. Herpetol. 13: 147–152.

    Article  Google Scholar 

  • Olive, P. J. W., 1980, Growth lines in polychaete jaws (teeth), in: Skeletal Growth of Aquatic Organisms (D. C. Rhoads and R. A. Lutz, eds.), pp. 561–592, Plenum Press, New York.

    Google Scholar 

  • Paine, R. T., 1969, Growth and size distribution of the brachiopod Terebratalia transversa Sowerby, Pac. Sci. 23: 337–343.

    Google Scholar 

  • Pannella, G., 1980, Growth patterns in fish sagittae, in: Skeletal Growth of Aquatic Organisms (D. C. Rhoads and R. A. Lutz, eds.), pp. 519–560, Plenum Press, New York.

    Google Scholar 

  • Pannella, G., and MacClintock, C., 1968, Biological and environmental rhythms reflected in molluscan shell growth, J. Paleontol. 42: 64–80.

    Google Scholar 

  • Peabody, F. E., 1961, Annual growth zones in living and fossil vertebrates, J. Morphol. 108: 11–62.

    Article  Google Scholar 

  • Pearse, J. S., and Pearse, V. B., 1975, Growth zones in the echinoid skeleton, Am. Zool. 15: 731–753.

    Google Scholar 

  • Raup, D. M., 1968, Theoretical morphology of echinoid growth, J. Paleontol. 42: 50–63.

    Google Scholar 

  • Rhoads, D. C., and Lutz, R. A. (eds.), 1980, Skeletal Growth of Aquatic Organisms, Plenum Press, New York.

    Google Scholar 

  • Rhoads, D. C., and Pannella, G., 1970, The use of molluscan shell growth patterns in ecology and paleoecology, Lethaia 4: 413–428.

    Article  Google Scholar 

  • Richter, J. P., 1883, Leonardo, Low, Marston, Searle, and Rivington, London.

    Google Scholar 

  • Rosenberg, G. D., 1980, An ontogenetic approach to the environmental significance of bivalve shell chemistry, in: Skeletal Growth of Aquatic Organisms (D. C. Rhoads and R. A. Lutz, eds.), pp. 133–168, Plenum Press, New York.

    Google Scholar 

  • Rudwick, M. J. S., 1968, Some analytic methods in the study of ontogeny in fossils with accretionary skeletons, J. Paleontol. 42: 35–49.

    Google Scholar 

  • Schemnitz, S. D. (ed.), 1980, Wildlife Management Techniques Manual, 4th ed., The Wildlife Society, Washington, D.C.

    Google Scholar 

  • Shea, B. T., 1983, Allometry and heterochrony in the African apes, Am. J. Phys. Anthropol. 62: 275–289.

    Article  PubMed  CAS  Google Scholar 

  • Smith, B. H., 1986, Dental development in Australopithecus and early Homo, Nature 323: 327–330.

    Article  Google Scholar 

  • Spinage, C. A., 1972a, African ungulate life tables, Ecology 53: 645–652.

    Article  Google Scholar 

  • Spinage, C. A., 1972b, Age estimation of zebra, E. Afr. Wildl. J. 10: 273–277.

    Article  Google Scholar 

  • Taylor, B. E., and Ward, P. D., 1983, Stable isotope study of Nautilus macromphalus Sowerby (New Caledonia) and Nautilus pompilius L. (Fiji), Palaeogeogr. Palaeoclimatol. Palaeoecol. 41: 1–16.

    Article  Google Scholar 

  • Thayer, C. W., 1977, Recruitment, growth, and mortality of a living articulate brachiopod, with implications for the interpretation of survivorship curves, Paleobiology 3: 98–109.

    Google Scholar 

  • Voorhies, M. R., 1969, Taphonomy and Population Dynamics of an Early Pliocene Vertebrate Fauna, Knox County, Nebraska, University of Wyoming Contributions in Geology, Special Paper 1.

    Google Scholar 

  • Walker, K. R., and Parker, W. C., 1976, Population structure of a pioneer and a late stage species in an Ordovician ecological succession, Paleobiology 2: 191–201.

    Google Scholar 

  • Weber, J. N., 1969, Origin of concentric banding in the spines of the tropical echinoid Heterocentrotus, Pac. Sci. 23: 452–466.

    Google Scholar 

  • Weber, J. N., White, E. W., and Weber, P. H., 1975, Correlation of density banding in reef coral skeletons with environmental parameters: The basis for interpretation of chronological records preserved in the coralla of corals, Paleobiology 1: 137–149.

    Google Scholar 

  • Wefer, G., and Killingley, J. S., 1980, Growth histories of strombid snails from Bermuda recorded in their O-18 and C-13 profiles, Mar. Biol. 60: 129–135.

    Article  CAS  Google Scholar 

  • Zolotarev, V. N., 1980, The life span of bivalves from the Sea of Japan and Sea of Okhotsk, Sov. J. Mar. Biol. 6: 301–308.

    Google Scholar 

  • Zug, G. R., Wynn, A. H., and Ruckdeschel, C., 1986, Age determination of loggerhead sea turtles, Caretta caretta, by incremental growth marks in the skeleton, Smithson. Contrib. Zool. 427: 1–34.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer Science+Business Media New York

About this chapter

Cite this chapter

Jones, D.S. (1988). Sclerochronology and the Size versus Age Problem. In: McKinney, M.L. (eds) Heterochrony in Evolution. Topics in Geobiology, vol 7. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0795-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0795-0_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-0797-4

  • Online ISBN: 978-1-4899-0795-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics