Advertisement

Sclerochronology and the Size versus Age Problem

  • Douglas S. Jones
Part of the Topics in Geobiology book series (TGBI, volume 7)

Abstract

The rekindling of interest surrounding the role of heterochrony in the evolution of life has produced many examples of paedomorphosis and peramorphosis among fossil taxa, attesting to the ubiquity of this phenomenon (McNamara, 1986, and this volume). Nevertheless, two significant problems are intimately associated with such heterochronic studies: (1) uncertainties of taxonomy and ancestor-descendant relationships (see Fink, this volume); and (2) the problem of assessing absolute age (and hence growth rate) throughout ontogeny. Whereas both problems may be significant when attempting to distinguish among the various heterochronic processes that might have operated in a particular case, it is my contention that sclerochronology can often help resolve the latter.

Keywords

Growth Line Shell Growth Skeletal Growth Molluscan Shell Mountain Goat 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alberch, P., Gould, S. J., Oster, G. F., and Wake, D. B., 1979, Size and shape in ontogeny and phylogeny, Paleobiology 5: 296–317.Google Scholar
  2. Barker, R. M., 1964, Microtextural variation in pelecypod shells, Malacologia 2: 69–86.Google Scholar
  3. Barker, R. M., 1970, Constituency and origins of cyclic growth layers in pelecypod shells, Ph.D. dissertation, University of California, Berkeley.Google Scholar
  4. Barnes, D. J., 1970, Coral skeletons: An explanation of their growth and structure, Science 170: 1305–1308.PubMedCrossRefGoogle Scholar
  5. Bourget, E., 1980, Barnacle shell growth and its relationship to environmental factors, in: Skeletal Growth of Aquatic Organisms (D. C. Rhoads and R. A. Lutz, eds.), pp. 469–491, Plenum Press, New York.Google Scholar
  6. Bromage, T. G., and Dean, M. C., 1985, Re-evaluation of the age at death of immature fossil hominids, Nature 317: 525–527.PubMedCrossRefGoogle Scholar
  7. Castanet, J., Muenier, F. J., and Ricqlès, A., 1977, L’enregistrement de la croissance cyclique par le tissu osseux chez les vertébrés poikilothermes: Données comparatives et essai de synthèse, Bull. Biol. Fr. Belg. 111: 183–202.Google Scholar
  8. Clark, G. R., 1974, Growth lines in invertebrate skeletons, Annu. Rev. Earth Planet. Sci. 2: 77–99.CrossRefGoogle Scholar
  9. Comfort, A., 1951, The pigmentation of molluscan shells, Biol. Rev. 26: 285–301.CrossRefGoogle Scholar
  10. De Beer, G. R., 1930, Embryology and Evolution, Clarendon Press, Oxford.Google Scholar
  11. De Beer, G. R., 1958, Embryos and Ancestors, Clarendon Press, Oxford.Google Scholar
  12. Dodd, J. R., and Stanton, R. J., Jr., 1981, Paleoecology, Concepts and Applications, Wiley, New York.Google Scholar
  13. Dodge, R. E., and Vaisnys, J. R., 1980, Skeletal growth chronologies of recent and fossil corals, in: Skeletal Growth of Aquatic Organisms (D. C. Rhoads and R. A. Lutz, eds.), pp. 493–517, Plenum Press, New York.Google Scholar
  14. Donner, J., and Nord, A. G., 1986, Carbon and oxygen stable isotope values in shells of Mytilus edulis and Modiolus modiolus from Holocene raised beaches at the outer coast of the Varanger Peninsula, north Norway, Palaeogeogr. Palaeoclimatol. Palaeoecol. 56: 35–50.CrossRefGoogle Scholar
  15. Emerson, S. B., 1986, Heterochrony and frogs: The relationship of a life history trait to morphologic form, Am. Nat. 127: 167–183.CrossRefGoogle Scholar
  16. Epstein, S., Buchsbaum, R., Lowenstam, H. A., and Urey, H. C., 1953, Revised carbonate-water isotopic temperature scale, Bull. Geol. Soc. Am. 64: 1315–1326.CrossRefGoogle Scholar
  17. Evans, J. W., 1972, Tidal growth increments in the cockleClinocardium nuttalli, Science 176: 416–417.PubMedCrossRefGoogle Scholar
  18. Fritts, H. C., 1976, Tree Rings and Climate, Academic Press, New York.Google Scholar
  19. Gould, S. J., 1977, Ontogeny and Phylogeny, Harvard University Press, Cambridge.Google Scholar
  20. Hemelaar, A. S. M., and van Gelder, J. J., 1980, Annual growth rings in phalanges of Bufo bufo (Anura, Amphibia) from the Netherlands and their use for age determination, Neth. J. Zool. 30: 129–135.CrossRefGoogle Scholar
  21. Hitch, C. J., 1982, Dendrochronology and serendipity, Am. Sci. 70:300–305.Google Scholar
  22. Hudson, J. H., Shinn, E., Halley, R., and Lidz, B., 1976, Sclerochronology: A new tool for interpreting past environments, Geology 4: 361–364.CrossRefGoogle Scholar
  23. Hulbert, R. C., Jr., 1982, Population dynamics of the three-toed horse Neohipparion from the late Miocene of Florida, Paleobiology 8: 159–167.Google Scholar
  24. Hutton, J. M., 1986, Age determination of living Nile crocodiles from the cortical stratification of bone, Copeia 1986(2): 332–341.CrossRefGoogle Scholar
  25. Jones, C. B., 1981, Periodicities in stromatolite lamination from the early Proterozoic Hearne Formation, Great Slave Lake, Canada, Palaeontology 24: 231–250.Google Scholar
  26. Jones, D. S., 1981, Repeating layers in the molluscan shell are not always periodic, J. Paleontol. 55: 1076–1082.Google Scholar
  27. Jones, D. S., 1983, Sclerochronology: Reading the record of the molluscan shell, Am. Sci. 71: 384–391.Google Scholar
  28. Jones, D. S., 1985, Growth increments and geochemical variations in the molluscan shell, in: Mollusks: Notes for a Short Course (D. J. Bottjer, C. S. Hickman, and P. D. Ward, eds.), pp. 72–87, Paleontological Society and University of Tennessee, Knoxville.Google Scholar
  29. Jones, D. S., Williams, D. F., and Romanek, C. S., 1986, Life history of symbiont-bearing giant clams from stable isotope profiles, Science 231: 46–48.PubMedCrossRefGoogle Scholar
  30. Jones, P., and Crisp, M., 1985, Microgrowth bands in chitons: Evidence of tidal periodicity, J. Moll. Stud. 51: 133–137.Google Scholar
  31. Jungers, W. L. (ed.), 1985, Size and Scaling in Primate Biology, Plenum Press, New York.Google Scholar
  32. Kennish, M. J., and Olsson, R. K., 1975, Effects of thermal discharges on the microstructural growth of Mercenaria mercenaria, Environ. Geol. 1: 41–64.CrossRefGoogle Scholar
  33. Klevezal, G. A., and Kleinenberg, S. E., 1967, Age Determination of Mammals from Annual Layers in Teeth and Bones, USSR Academy of Science, Severtsov Institute of Animal Morphology (Translated from Russian), U. S. Department of Commerce, Springfield, Virginia.Google Scholar
  34. Knutson, D. W., Buddemeier, R. W., and Smith, S. V., 1972, Coral chronometers: Seasonal growth bands in reef corals, Science 177: 270–272.PubMedCrossRefGoogle Scholar
  35. Koch, P. L., and Fisher, D. C., 1986, Out of the mouths of mammoths: An isotopic signal of seasons in proboscidean tusks, in: Geological Society of America Annual Meeting, Abstracts with Program, Vol. 18, p. 660.Google Scholar
  36. Krantz, D. E., Jones, D. S., and Williams, D. F., 1984, Growth rates of the sea scallop, Placopecten magellanicus, determined from the 18O/16O record in shell calcite, Biol. Bull. 167: 186–199.CrossRefGoogle Scholar
  37. Landman, N. H., Rye, D. M., and Shelton, K. L., 1983, Early ontogeny of Eutrephoceras compared to Recent Nautilus and Mesozoic ammonites: Evidence from shell morphology and light stable isotopes, Paleobiology 9: 269–279.Google Scholar
  38. Larson, J. S., and Taber, R. D., 1980, Criteria of sex and age, in: Wildlife Management Techniques Manual, 4th ed. (S. D. Schemnitz, ed.), pp. 143–202, Wildlife Society, Washington, D.C.Google Scholar
  39. Lutz, R. A., and Rhoads, D. C., 1977, Anaerobiosis and a theory of growth line formation, Science 198: 1222–1227.PubMedCrossRefGoogle Scholar
  40. Lutz, R. A., and Rhoads, D. C., 1980, Growth patterns within the molluscan shell: An overview, in: Skeletal Growth of Aquatic Organisms (D. C. Rhoads and R. A. Lutz, eds.), pp. 203–254, Plenum Press, New York.Google Scholar
  41. McKinney, M. L., 1984, Allometry and heterochrony in an Eocene echinoid lineage: Morphological change as a by-product of size selection, Paleobiology 10: 207–219.Google Scholar
  42. McNamara, K. J., 1986, A guide to the nomenclature of heterochrony, J. Paleontol. 60: 4–13.Google Scholar
  43. Meyer, F. O., 1981, Stromatoporoid growth rhythms and rates, Science 213: 894–895.PubMedCrossRefGoogle Scholar
  44. Minakami, K., 1979, An estimation of age and life span of the genus Trimeresurus (Reptilia, Serpentes, Viperidae) on Amani Oshima Island, Japan, J. Herpetol. 13: 147–152.CrossRefGoogle Scholar
  45. Olive, P. J. W., 1980, Growth lines in polychaete jaws (teeth), in: Skeletal Growth of Aquatic Organisms (D. C. Rhoads and R. A. Lutz, eds.), pp. 561–592, Plenum Press, New York.Google Scholar
  46. Paine, R. T., 1969, Growth and size distribution of the brachiopod Terebratalia transversa Sowerby, Pac. Sci. 23: 337–343.Google Scholar
  47. Pannella, G., 1980, Growth patterns in fish sagittae, in: Skeletal Growth of Aquatic Organisms (D. C. Rhoads and R. A. Lutz, eds.), pp. 519–560, Plenum Press, New York.Google Scholar
  48. Pannella, G., and MacClintock, C., 1968, Biological and environmental rhythms reflected in molluscan shell growth, J. Paleontol. 42: 64–80.Google Scholar
  49. Peabody, F. E., 1961, Annual growth zones in living and fossil vertebrates, J. Morphol. 108: 11–62.CrossRefGoogle Scholar
  50. Pearse, J. S., and Pearse, V. B., 1975, Growth zones in the echinoid skeleton, Am. Zool. 15: 731–753.Google Scholar
  51. Raup, D. M., 1968, Theoretical morphology of echinoid growth, J. Paleontol. 42: 50–63.Google Scholar
  52. Rhoads, D. C., and Lutz, R. A. (eds.), 1980, Skeletal Growth of Aquatic Organisms, Plenum Press, New York.Google Scholar
  53. Rhoads, D. C., and Pannella, G., 1970, The use of molluscan shell growth patterns in ecology and paleoecology, Lethaia 4: 413–428.CrossRefGoogle Scholar
  54. Richter, J. P., 1883, Leonardo, Low, Marston, Searle, and Rivington, London.Google Scholar
  55. Rosenberg, G. D., 1980, An ontogenetic approach to the environmental significance of bivalve shell chemistry, in: Skeletal Growth of Aquatic Organisms (D. C. Rhoads and R. A. Lutz, eds.), pp. 133–168, Plenum Press, New York.Google Scholar
  56. Rudwick, M. J. S., 1968, Some analytic methods in the study of ontogeny in fossils with accretionary skeletons, J. Paleontol. 42: 35–49.Google Scholar
  57. Schemnitz, S. D. (ed.), 1980, Wildlife Management Techniques Manual, 4th ed., The Wildlife Society, Washington, D.C.Google Scholar
  58. Shea, B. T., 1983, Allometry and heterochrony in the African apes, Am. J. Phys. Anthropol. 62: 275–289.PubMedCrossRefGoogle Scholar
  59. Smith, B. H., 1986, Dental development in Australopithecus and early Homo, Nature 323: 327–330.CrossRefGoogle Scholar
  60. Spinage, C. A., 1972a, African ungulate life tables, Ecology 53: 645–652.CrossRefGoogle Scholar
  61. Spinage, C. A., 1972b, Age estimation of zebra, E. Afr. Wildl. J. 10: 273–277.CrossRefGoogle Scholar
  62. Taylor, B. E., and Ward, P. D., 1983, Stable isotope study of Nautilus macromphalus Sowerby (New Caledonia) and Nautilus pompilius L. (Fiji), Palaeogeogr. Palaeoclimatol. Palaeoecol. 41: 1–16.CrossRefGoogle Scholar
  63. Thayer, C. W., 1977, Recruitment, growth, and mortality of a living articulate brachiopod, with implications for the interpretation of survivorship curves, Paleobiology 3: 98–109.Google Scholar
  64. Voorhies, M. R., 1969, Taphonomy and Population Dynamics of an Early Pliocene Vertebrate Fauna, Knox County, Nebraska, University of Wyoming Contributions in Geology, Special Paper 1.Google Scholar
  65. Walker, K. R., and Parker, W. C., 1976, Population structure of a pioneer and a late stage species in an Ordovician ecological succession, Paleobiology 2: 191–201.Google Scholar
  66. Weber, J. N., 1969, Origin of concentric banding in the spines of the tropical echinoid Heterocentrotus, Pac. Sci. 23: 452–466.Google Scholar
  67. Weber, J. N., White, E. W., and Weber, P. H., 1975, Correlation of density banding in reef coral skeletons with environmental parameters: The basis for interpretation of chronological records preserved in the coralla of corals, Paleobiology 1: 137–149.Google Scholar
  68. Wefer, G., and Killingley, J. S., 1980, Growth histories of strombid snails from Bermuda recorded in their O-18 and C-13 profiles, Mar. Biol. 60: 129–135.CrossRefGoogle Scholar
  69. Zolotarev, V. N., 1980, The life span of bivalves from the Sea of Japan and Sea of Okhotsk, Sov. J. Mar. Biol. 6: 301–308.Google Scholar
  70. Zug, G. R., Wynn, A. H., and Ruckdeschel, C., 1986, Age determination of loggerhead sea turtles, Caretta caretta, by incremental growth marks in the skeleton, Smithson. Contrib. Zool. 427: 1–34.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1988

Authors and Affiliations

  • Douglas S. Jones
    • 1
  1. 1.Florida State MuseumUniversity of FloridaGainesvilleUSA

Personalised recommendations