Shape Analysis

Ideas from the Ostracoda
  • David W. Foster
  • Roger L. Kaesler
Part of the Topics in Geobiology book series (TGBI, volume 7)


The availability of computing power to paleontologists has been accompanied by the development of new methods of analysis and increasingly sophisticated software, much of which is readily adaptable to the study of heterochrony. Among these new developments is a suite of techniques that can be grouped under the broad category of shape analysis. Here we use the term to refer to any multivariate method that is aimed at evaluating shapes, including special applications of multivariate morphometric methods (Tissot, this volume), as well as new techniques designed with quite special purposes in mind. Shapes to be evaluated may be either such smooth curves as outlines or constellations of landmarks that can be homologized from specimen to specimen or from taxon to taxon.


Shape Function Outline Analysis Shape Analysis Planktonic Foraminifera Muscle Scar 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alberch, P., Gould, S. J., Oster, G. F., and Wake, D. B., 1979, Size and shape in ontogeny and phylogeny, Paleobiology 5(3): 296–317.Google Scholar
  2. Anstey, R. L., and Delmet, D. A., 1973, Fourier analysis of zooecial chamber shapes in fossil tubular bryozoans, Geol. Soc. Am. Bull. 84: 1753–1764.CrossRefGoogle Scholar
  3. Benson, R. H., 1967, Muscle-scar patterns of Pleistocene (Kansan) ostracodes, in: Essays in Paleontology and Stratigraphy (C. Teichert and E. L. Yochelson, eds.), pp. 211–242, University Press of Kansas, Lawrence, Kansas.Google Scholar
  4. Benson, R. H., 1982, Comparative transformation of shape in a rapidly evolving series of structural morphotypes of the ostracod Bradleya, in: Fossil and Recent Ostracods (R. H. Bate, E. Robinson, and L. M. Sheppard, eds.), pp. 147–164, Horwood, Chichester.Google Scholar
  5. Benson, R. H., Chapman, R. E., and Siegel, A. F., 1982, On the measurement of morphology and its change, PaleobioIogy 8(4): 328–339.Google Scholar
  6. Bookstein, F. L., 1978, The Measurement of Biological Shape and Shape Change, Springer-Verlag, New York.CrossRefGoogle Scholar
  7. Bookstein, F. L., 1980, When one form is between two others: An application of biorthogonal analysis, Am. Zool. 20: 627–641.Google Scholar
  8. Bookstein, F. L., 1982, Foundations of morphometrics, Annu. Rev. Ecol. Syst. 13: 451–470.CrossRefGoogle Scholar
  9. Bookstein, F. L., Strauss, R. E., Humphries, J. M., Chemoff, B., Elder, R. L., and Smith, G. R., 1982, A comment upon the uses of Fourier methods in systematics, Syst. Zool. 31: 85–92.CrossRefGoogle Scholar
  10. Brower, J. C., and Veinus, J., 1978, Multivariate analysis of allometry using point coordinates, J. Paleontol., 52:1037-1053.Google Scholar
  11. Chapman, R. E., Galton, P. M., Sepkoski, J. J., Jr., and Wall, W. P., 1981, A morphometric study of the cranium of the pachycephalosaurid dinosaur Stegoceras, J. Paleontol. 55: 608–618.Google Scholar
  12. Christopher, R. A., and Waters, J. A., 1974, Fourier series as a quantitative descriptor of miospore shape, J. Paleontol. 48(4): 697–709.Google Scholar
  13. Edgington, E. S., 1980, Randomization Tests, Dekker, New York.Google Scholar
  14. Ehrlich, R., and Full, W. E., 1986, Comments of “Relationships among eigenshape analysis, Fourier analysis, and analysis of coordinates” by F. James Rohlf,Math. Geol. 18: 855–857.Google Scholar
  15. Ehrlich, R., and Weinberg, B., 1970, An exact method for characterization of grain shape, J. Sed. Petrol. 40(l):205–212.Google Scholar
  16. Ehrlich, R., Pharr, R. B., Jr., and Healy-Williams, N., 1983, Comments on the validity of Fourier descriptors in systematics: A reply to Bookstein et al., Syst. Zool. 32(2):202–206.CrossRefGoogle Scholar
  17. Evans, D. G., Schweitzer, P. N., and Hanna, M. S., 1985, Parametric cubic splines and geologic shape descriptions, Math. Geol. 17(6): 611–624.CrossRefGoogle Scholar
  18. Foster, D. W., and Kaesler, R. L., 1983, Intraspecific morphological variability of ostracodes from carbonate and mixed carbonate-terrigenous depositional environments, in: Applications of Ostracoda (R. F. Maddocks, ed.), pp. 627–639, University of Houston, Houston.Google Scholar
  19. Full, W. E., and Ehrlich, R., 1982, Some approaches for locations of centroids of quartz grain outlines to increase homology between Fourier amplitude spectra, Math. Geol. 15: 259–270.Google Scholar
  20. Full, W. E., and Ehrlich, R., 1986, Fundamental problems associated with “eigenshape analysis” and similar “factor” analysis procedures, Math. Geol. 18(5)451–463.CrossRefGoogle Scholar
  21. Full, W. E., Ehrlich, R., and Bezdek, J., 1982, Fuzzy Qmodel—A new approach for linear unmixing, Math. Geol. 14: 259–270.CrossRefGoogle Scholar
  22. Gould, S. J., 1977, Ontogeny and Phylogeny, Harvard University Press, Cambridge.Google Scholar
  23. Healy-Williams, N., and Williams, D. F., 1981, Fourier analysis of test shape of planktonic foraminifera, Nature 289: 485–487.CrossRefGoogle Scholar
  24. Healy-Williams, N., Ehrlich, R., and Williams, D. F., 1985, Morphometric and stable isotopic evidence for subpopulations of Globorotalia truncatulinoides, J. Foram. Res. 15(4):242–253.CrossRefGoogle Scholar
  25. Humphries, J. M., Bookstein, F. L., Chernoff, B., Smith, G. R., Elder, R. L., and Poss, S. G., 1981, Multivariate discrimination by shape in relation to size, Syst. Zool. 30: 291–308.CrossRefGoogle Scholar
  26. Kaesler, R. L., and Foster, D. W., 1988, Ontogeny of Bradleya normani (Brady): Shape analysis of landmarks, in: Proceedings of the Ninth International Symposium on Ostracoda (T. Hanai, N. Ikeya, and K. Ishizaki, eds.) (in press).Google Scholar
  27. Kaesler, R. L., and Maddocks, R. F., 1984, Preliminary harmonic analysis of outlines of recent macrocypridid Ostracoda, in:Symposium on Ostracodes, Additional Communications and Discussions, Serbian Geological Society, pp. 169-174.Google Scholar
  28. Kaesler, R. L., and Waters, J. A., 1972, Fourier analysis of the ostracode margin, Geol. Soc. Am. Bull. 83: 1169–1178.CrossRefGoogle Scholar
  29. Lohmann, G. P., 1983, Eigenshape analysis of microfossils: A general morphometric procedure for describing changes in shape, Math. Geol. 15: 659–672.CrossRefGoogle Scholar
  30. Malmgren, B. A., Berggren, W. A., and Lohmann, F. P., 1983, Equatorward migration of Globorotalia truncatulinoides ecophenotypes through the late Pleistocene: Gradual evolution or ocean change?, Paleobiology 9(4): 377–389.Google Scholar
  31. Maness, T. R., and Kaesler, R. L., 1987, Ontogenetic Changes in the Carapace of Tyrrhenocythere amnicola (Sars), a Hemicytherid Ostracode, University of Kansas Paleontological Contributions, No. 118.Google Scholar
  32. McNamara, K. J., 1986, A guide to the nomenclature of heterochrony, J. Paleontol. 60(l):4–13.Google Scholar
  33. Raup, D. M., 1966, Geometric analysis of shell coiling: General problems, J. Paleontol. 40: 1178–1190.Google Scholar
  34. Read, D. W., and Lestrel, P. E., 1986, Comment of uses of homologous-point measures in systematics: A reply to Bookstein et al., Syst. Zool. 35(2):241–253.CrossRefGoogle Scholar
  35. Rohlf, F. J., 1986, Relationships among eigenshape analysis, Fourier analysis, and analysis of coordinates, Math. Geol. 18: 845–854.CrossRefGoogle Scholar
  36. Rohlf, F. J., and Archie, J., 1984, A comparison of Fourier methods for the description of wing shape in mosquitoes (Diptera: Culicidae), Syst. Zool. 33: 302–317.CrossRefGoogle Scholar
  37. Romesburg, H. C., 1985, Exploring, confirming, and randomization tests, Computers Geosci. 11(1): 19–37.CrossRefGoogle Scholar
  38. Sanderson, D. J., 1977, The algebraic evaluation of two-dimensional finite strain rosettes, Math. Geol. 9(5): 483–496.CrossRefGoogle Scholar
  39. Schweitzer, P. N., Kaesler, R. L., and Lohmann, G. P., 1986, Ontogeny and heterochrony in the ostracode Cavellina Coryell from Lower Permian rocks in Kansas, Paleobiology 12(3): 290–301.Google Scholar
  40. Siegel, A. F., 1982, Geometric data analysis: An interactive graphics program for shape comparison, in: Modern Data Analysis (R. L. Launer and A. F. Siegel, eds.), pp. 103–122, Academic Press, New York.Google Scholar
  41. Siegel, A. F., and Benson, R. H., 1982, A robust comparison of biological shapes, Biometrics 38: 341–250.PubMedCrossRefGoogle Scholar
  42. Simpson, G. G., and Beck, W. S., 1965, Life, 2nd ed., Harcourt, Brace & World, New York.Google Scholar
  43. Sneath, P. H. A., 1967, Trend-surface analysis of transformation grids, J. Zool. Soc. Lond. 151: 65–122.CrossRefGoogle Scholar
  44. Sokal, R. R., and Rohlf, F. J., 1981, Biometry, 2nd ed., Freeman, San Francisco.Google Scholar
  45. Strauss, R. E., and Bookstein, F. L., 1982, The truss: Body form reconstructions in morphometrics, Syst. Zool. 31(2): 113–135.CrossRefGoogle Scholar
  46. Thompson, D’A. W., 1917, On Growth and Form, Cambridge University Press, Cambridge.Google Scholar
  47. Waters, J. A., 1977, Quantification of shape by use of Fourier analysis: The Mississippian blastoid genus Pentremites, Paleobiology 3: 288–299.Google Scholar
  48. Willig, M. R., Owen, R. D., and Colbert, R. L., 1986, Assessment of morphometric variation in natural populations: The inadequacy of the univariate approach, Syst. Zool. 35(2): 195–203.CrossRefGoogle Scholar
  49. Zahn, C. T., and Roskies, R. Z., 1972, Fourier descriptors for plane closed curves, IEEE Trans. Computers C-21(3):269–281.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1988

Authors and Affiliations

  • David W. Foster
    • 1
  • Roger L. Kaesler
    • 1
  1. 1.Department of Geology, Museum of Invertebrate Paleontology, and Paleontological InstituteUniversity of KansasLawrenceUSA

Personalised recommendations