Multivariate Analysis

  • Brian N. Tissot
Part of the Topics in Geobiology book series (TGBI, volume 7)

Abstract

This chapter focuses on the multivariate analysis of morphological variation resulting from heterochrony, or changes in the timing of developmental events during ontogeny (de Beer, 1958). My goals are threefold: (1) outline the steps in a multivariate analysis, (2) illustrate the methodology with data on a recent marine gastropod, the black abalone, Haliotis cracherodii, and (3) discuss conceptual difficulties involving heterochrony.

Keywords

Shell Length Principal Component Score General Size Muscle Scar Allometric Growth 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alberch, P., and Alberch, J., 1981, Heterochronic mechanisms of morphological diversification and evolutionary change in the Neotropical salamander, Bolitoglossa occidentalis (Amphibia: Plethodontidae), J. Morphol 161: 249–264.CrossRefGoogle Scholar
  2. Alberch, P., Gould, S. J., Oster, G. F., and Wake, D. B., 1979, Size and shape in ontogeny and phylogeny, Paleobiology 5(3):296–317.Google Scholar
  3. Anderson, T. W., 1963, Asymptotic theory for principal components analysis, Ann. Math. Stat. 34: 122–148.CrossRefGoogle Scholar
  4. Atchley, W. R., 1983, Some genetic aspects of morphometric variation, in: Numerical Taxonomy (J. Felsenstein, ed.), pp. 346–363, Springer-Verlag, Berlin.CrossRefGoogle Scholar
  5. Atchley, W. R., 1984, Ontogeny, timing of development, and genetic variance-covariance structure, Am. Nat. 123: 519–540.CrossRefGoogle Scholar
  6. Atchley, W. R., and Rutledge, J. J., 1980, Genetic components of size and shape. I. Dynamics of components of phenotypic variability and covariability during ontogeny in the laboratory rat, Evolution 34: 1161–1173.CrossRefGoogle Scholar
  7. Atchley, W. R., Rutledge, J. J., and Cowley, D. E., 1981, Genetic components of size and shape. II. Multivariate covariance patterns in the rat and mouse skull, Evolution 35: 1037–1055.CrossRefGoogle Scholar
  8. Blackith, R. E., 1957, Polymorphism in some Australian locusts and grasshoppers, Biometrics 13: 183–196.CrossRefGoogle Scholar
  9. Blackith, R. E., 1960, A synthesis of multivariate techniques to distinguish patterns of growth in grasshoppers, Biometrics 16: 28–40.CrossRefGoogle Scholar
  10. Blackith, R. E., and Reyment, R. A. 1971, Muitivariate Morphometrics, Academic Press, New York.Google Scholar
  11. Bookstein, F. L., Chernoff, B., Elder, R., Humphries, J., Smith, G., and Strauss, R., 1985, Morphometrics in Evolutionary Biology, Academy of Natural Sciences, Philadelphia, Special Publication 15.Google Scholar
  12. Bryant, E. H., 1986, On use of logarithms to accommodate scale, Syst. Zool. 35(4):552–559.CrossRefGoogle Scholar
  13. Calder, W. A., 1984, Size, Function, and Life History, Harvard University Press, Cambridge.Google Scholar
  14. Cattell, R. B., 1966, The scree test for the number of factors, Multivariate Behav. Res. 1: 140–161.Google Scholar
  15. Cock, A. G., 1966, Genetical aspects of metrical growth and form in animals, Q. Rev. Biol. 41: 131–190.PubMedCrossRefGoogle Scholar
  16. Cooley, W. W., and Lohnes, P. R., 1971, Multivariate Data Analysis, Wiley, New York.Google Scholar
  17. Cox, K. W., 1962, California Abalones, Family Haliotidae, California Fish and Game Bulletin, No. 118.Google Scholar
  18. De Beer, G. R., 1958, Embryos and Ancestors, Clarendon Press, Oxford.Google Scholar
  19. Dillon, W. R., and Goldstein, M., 1984, Multivariate Analysis: Methods and Applications, Wiley, New York.Google Scholar
  20. Dixon, W. J., and Brown, M. B., eds., 1979, Biomedical Computer Programs, P-series, University of California Press, Berkeley.Google Scholar
  21. Dudzinski, M. L., Norris, J. M, Chmura, J. T., and Edwards, C. B. H., 1975, Repeatability of principal components in samples: Normal and non-normal data sets compared, Multivariate Behav. Res. 10: 109–117.CrossRefGoogle Scholar
  22. Falconer, D. S., 1981, Introduction to Quantitative Genetics, 2nd ed., Longman, London.Google Scholar
  23. Fink, W. L., 1982, The conceptual relationship between ontogeny and phylogeny, Paleobiology 8(3):254–264.Google Scholar
  24. Fisher, D. C., 1985, Evolutionary morphology: Beyond the analogous, the anecdotal, and the ad hoc, Paleobiology 11(1): 120–138.Google Scholar
  25. Gould, S. J., 1966, Allometry and size in ontogeny and phylogeny, Biol. Rev. 41: 587–640.PubMedCrossRefGoogle Scholar
  26. Gould, S. J., 1969, An evolutionary microcosm: Pleistocene and Recent history of the land snail P. (Poecilozonites) in Bermuda, Bull. Mus. Comp. Zool. 138: 407–532.Google Scholar
  27. Gould, S. J., 1977, Ontogeny and Phylogeny, Harvard University Press, Cambridge.Google Scholar
  28. Horn, J. L., 1965, A rationale and test for the number of factors in factor analysis, Psychometrika 30:179.PubMedCrossRefGoogle Scholar
  29. Humphries, J. M., Bookstein, F. L., Chernoff, B., Smith, G. R., Elder, R. L., and Poss, S. G., 1981, Multivariate discrimination by shape in relation to size, Syst. Zool. 30(3):291–308.CrossRefGoogle Scholar
  30. Huxley, J. S., 1932, Problems of Relative Growth, Dial Press, New York.Google Scholar
  31. Jolicoeur, P., 1959, Multivariate geographic variation in the wolf Canis lupus (L.), Evolution 13(3): 283–299.CrossRefGoogle Scholar
  32. Jolicoeur, P., 1963a, The multivariate generalization of the allometry equation, Biometrics 19(3): 497–499.CrossRefGoogle Scholar
  33. Jolicoeur, P., 1963b, The degree of generality of robustness in Martes americana, Growth 27:1–27.Google Scholar
  34. Jolicoeur, P., 1984, Principal components, factor analysis, and multivariate allometry: A small-sample direction test, Biometrics 40: 685–690.CrossRefGoogle Scholar
  35. Jolicoeur, P., and Mosimann, J. E., 1960, Size and shape variation in the painted turtle: A principal component analysis, Growth 24: 339–354.PubMedGoogle Scholar
  36. Lernen, C. A., 1983, The effectiveness of methods of shape analysis, Fieldiana, Zool. 15: 1–17.Google Scholar
  37. Mather, P. M., 1976, Computational Methods of Multivariate Analysis in Physical Geography, Wiley, London.Google Scholar
  38. Maynard Smith, J., Burian, R., Kauffman, S., Alberch, P., Campbell, J., Goodwin, B., Lande, R., Raup, D., and Wolpert, L., 1985, Developmental constraints and evolution, Q. Rev. Biol. 60(3): 265–287.CrossRefGoogle Scholar
  39. McKinney, M. L., 1984, Allometry and heterochrony in an Eocene echinoid lineage: Morphological change as a by-product of size selection, Paleobiology 10(4): 407–419.Google Scholar
  40. McKinney, M. L., 1986, Ecological causation of heterochrony: A test and implications for evolutionary theory, Paleobiology 12(3): 282–289.Google Scholar
  41. Mosimann, J. E., 1970, Size allometry: Size and shape variables with characterizations of the lognormal and generalized gamma distribution, J. Am. Stat. Assoc. 65: 930–945.CrossRefGoogle Scholar
  42. Oxnard, C. E., 1978, One biologists’s view of morphometrics, Annu. Rev. Ecol. Syst. 9: 219–241.CrossRefGoogle Scholar
  43. Peters, R. H., 1984, The Ecological Implications of Body Size, Cambridge University Press, Cambridge.Google Scholar
  44. Pimentel, R. A., 1979, Morphometrics, the Multivariate Analysis of Biological Data, Kendall-Hunt, Dubuque, Iowa.Google Scholar
  45. Pimentel, R. A., 1981, A comparative study of data and ordination techniques based on a hybrid swarm of sand verbenas (Abronia Juss.), Syst. Zool. 30(3): 250–267.CrossRefGoogle Scholar
  46. Rao, C. R., 1958, Some statistical methods for comparison of growth curves, Biometrics 14(1): 1–17.CrossRefGoogle Scholar
  47. Schmidt-Nielsen, K., 1984, Scaling: Why Is Animal Size So Important?, Cambridge University Press, Cambridge.CrossRefGoogle Scholar
  48. Schweitzer, P. N., Kaesler, R. L., and Lohmann, G. P., 1986, Ontogeny and heterochrony in the ostracode Cavellina Coryell from Lower Permian rocks in Kansas, Paleobiology 12(3): 290–301.Google Scholar
  49. Shea, B. T., 1983, Allometry and heterochrony in the African apes, Am. J. Phys. Anthropol. 62:275–289.PubMedCrossRefGoogle Scholar
  50. Shea, B. T., 1985, Bivariate and multivariate growth allometry, J. Zool. Lond. A 206: 367–390.CrossRefGoogle Scholar
  51. Sneath, P. H. A., and Sokal, R. R., 1973, Numerical Taxonomy: The Principles and Practice of Numerical Classification, Freeman, San Francisco.Google Scholar
  52. Sokal, R. R., and Rohlf, F. J., 1981, Biometry: The Principles and Practice of Statistics in Biological Research, 2nd ed., Freeman, New York.Google Scholar
  53. Somers, K. M., 1986, Multivariate allometry and removal of size with principal components analysis, Syst. Zool. 35(3): 359–368.CrossRefGoogle Scholar
  54. Sprent, P., 1972, The mathematics of size and shape, Biometrics 28: 23–37.PubMedCrossRefGoogle Scholar
  55. Thompson, D’A. W., 1917, On Growth and Form, Cambridge University Press, Cambridge.Google Scholar
  56. Thorpe, R. S., 1980, A comparative study of ordination techniques in numerical taxonomy in relation to racial variation in the ringed snake Natrix natrix (L.), Biol. J. Linn. Soc. 13: 7–40.CrossRefGoogle Scholar
  57. Tissot, B. N., 1984, Multivariate analysis of geographic variation in Cypraea caputserpentis (Gastropoda: Cypraeidae), Veliger 27(2): 106–119.Google Scholar
  58. Tissot, B. N., 1988, Geographic variation and heterochrony in two species of cowries (genus Cypraea), Evolution 42(l):103–117.CrossRefGoogle Scholar
  59. Wiley, E. O., 1981, Phylogenetics: The Theory and Practice of Phylogenetic Systematics, Wiley, New York.Google Scholar

Copyright information

© Springer Science+Business Media New York 1988

Authors and Affiliations

  • Brian N. Tissot
    • 1
  1. 1.Department of ZoologyOregon State UniversityCorvallisUSA

Personalised recommendations