Advertisement

Heterochrony in Primates

  • Brian T. Shea
Part of the Topics in Geobiology book series (TGBI, volume 7)

Abstract

Until recently the study of heterochrony in primate evolution has focused primarily on arguments concerning human neoteny. Swiss zoologist Julius Kollman (1905), who introduced the term neoteny in the late 1800s, suggested that early humans could be traced to pygmy groups that had developed from anthropoid apes via juvenilization and neoteny. De Beer (1930), building on Bolk’s (1926, 1929) important work, made human evolution one of the central examples in his classic work Embryology and Evolution, which established the study of heterochrony within the modern synthesis. Continued emphasis is evidenced in the work of Abbie (1952, 1958, 1964), Montagu (1962, 1981), and Gould (1977).

Keywords

Sexual Dimorphism Pygmy Chimpanzee Relative Brain Size Common Chimpanzee Ontogenetic Allometry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abbie, A. A., 1952, A new approach to the problem of human evolution, Trans. R. Soc. S. Aust. 75: 70–88.Google Scholar
  2. Abbie, A. A., 1958, Timing in human evolution, Proc. Linn. Soc. N. S. Wales 88: 197–213.Google Scholar
  3. Abbie, A. A., 1964, The factor of timing in the emergence of distinctively human characters, Pap. Proc. R. Soc. Tasmania 98: 63–71.Google Scholar
  4. Alberch, P., and Gale, E. A., 1985, A developmental analysis of an evolutionary trend: Digital reduction in amphibians, Evolution 39: 8–23.CrossRefGoogle Scholar
  5. Alberch, P., Gould, S. J., Oster, G. F., and Wake, D. B., 1979, Size and shape in ontogeny and phylogeny, Paleobiology 5: 296–317.Google Scholar
  6. Atchley, W. R., 1987, Developmental quantitative genetics and the evolution of ontogenies. Evolution 41:316–330.CrossRefGoogle Scholar
  7. Atchley, W. R., Rutledge, J. J., and Cowley, D. E., 1981, Genetic components of size and shape. II. Multivariate covariance patterns in the rat and mouse skull, Evolution 35: 1037–1055.CrossRefGoogle Scholar
  8. Atchley, W. R., Riska, B., Kohn, L. A. P., Plummer, A. A., and Rutledge, J. J., 1984, A quantitative genetic analysis of brain and body size associations, their origin and ontogeny: data from mice, Evolution 38: 1165–1179.CrossRefGoogle Scholar
  9. Bartke, A., 1979, Genetic models in the study of anterior pituitary hormones, in: Genetic Variation in Hormone Systems (J. G. M. Shire, ed.), pp. 113–126, CRC Press, Boca Raton, Florida.Google Scholar
  10. Berge, C., Didier, M., Chaline, J., and Dommergues, J.-L., 1988, La bipèdie des hominides: Comparisons des itinéraires ontogénétiques des dimensions fémoropelviennes des pongides, australopithèques et hommes, Paper presented at the Colloque International: Ontogenèse et Evolution, Dijon, France, 1986, (in press).Google Scholar
  11. Bolk, L., 1926, On the problem of anthropogenesis, Proc. Section Sci. Kon. Akad. Wetens. Amsterdam 29: 465–475.Google Scholar
  12. Bolk, L., 1929, Origin of racial characteristics in man, Am. J. Phys. Anthropol. 13: 1–28.CrossRefGoogle Scholar
  13. Bonner, J. T., and Horn, H. S., 1982, Selection for size, shape, and developmental timing, in: Evolution and Development (J. T. Bonner, ed), pp. 259–276, Springer-Verlag, Berlin.CrossRefGoogle Scholar
  14. Bromage, T. G., 1985, Taung facial remodeling: A growth and development study, in: Hominid Evolution: Past, Present, and Future (P. V. Tobias, ed.), pp. 239–246, Liss, New York.Google Scholar
  15. Bromage, T. G., and Dean, M. C., 1985, Re-evaluation of the age at death of immature fossil hominids, Nature 317: 525–527.PubMedCrossRefGoogle Scholar
  16. Bryant, P. J., and Simpson, P., 1984, Intrinsic and extrinsic control of growth in developing organs, Q. Rev. Biol. 59: 387–415.PubMedCrossRefGoogle Scholar
  17. Chaline, J., Marchand, D., and Berge, C., 1986, L’évolution de l’homme: Un modele gradualiste ou ponctualiste?, Bull. Soc. R. Belge Anthropol. Prehist. 97:77–97.Google Scholar
  18. Charles, D. K., Condon, K., Cheverud, J. M., and Buikstra, J. E., 1986, Cementum annulation and age determination in Homo sapiens. I. Tooth variability and observer error, Am. J. Phys. Anthropol. 71: 311–321.PubMedCrossRefGoogle Scholar
  19. Cheverud, J. M., 1982, Relationships among ontogenetic, static, and evolutionary allometry, Am. J. Phys. Anthropol. 59: 139–149.PubMedCrossRefGoogle Scholar
  20. Cheverud, J. M., 1988, A comparison of phenotypic and genetic patterns of correlation, Evolution (in press).Google Scholar
  21. Cheverud, J. M., Rutledge, J. J., and Atchley, W. R., 1983a, Quantitative genetics of development: Genetic correlations among age-specific trait values and the evolution of ontogeny, Evolution 37: 895–905.CrossRefGoogle Scholar
  22. Cheverud, J. M., Leamy, L. J., Atchley, W. R., and Rutledge, J. J., 1983b, Quantitative genetics and the evolution of ontogeny. I. Ontogenetic changes in quantitative genetic variance components in randombred mice, Genet. Res. 42:65–75.CrossRefGoogle Scholar
  23. Clutton-Brock, T. H., and Harvey, P. H., 1979a, Home range size, population density and phylogeny in primates, in: Primate Ecology and Human Origins (I. S. Bernstein and E. O. Smith, eds.), pp. 201–214, Garland Press, New York.Google Scholar
  24. Clutton-Brock, T. H., and Harvey, P. H., 1979b, Comparison and adaptation, Proc. R. Soc. Lond. B 205: 547–565.PubMedCrossRefGoogle Scholar
  25. Coolidge, H. J., Jr., 1933, Pan paniscus: Pygmy chimpanzee from south of the Congo River, Am. J. Phys. Anthropol. 18: 1–57.CrossRefGoogle Scholar
  26. Corruccini, R. S., 1981, Analytical techniques for Cartesian coordinate data with reference to the relationship between Hylohates and Symphalangus (Hylobatidae; Hominoidea), Syst. Zool. 30: 32–40.CrossRefGoogle Scholar
  27. Count, E. W., 1947, Brain and body weight in man: Their antecedents in growth and evolution, Ann. N. Y. Acad. Sci. 46: 993–1122.CrossRefGoogle Scholar
  28. Cramer, D. L., 1977, Craniofacial Morphology of Pan paniscus, Karger, Basel.Google Scholar
  29. Creel, N., and Preuschoft, H., 1976, Cranial morphology of the lesser apes: A multivariate statistical study, Gibbon Siamang 4: 219–303.Google Scholar
  30. Dahl, J. F., 1986, Cyclic perineal swelling during the intermenstrual intervals of captive female pygmy chimpanzees (Pan paniscus), J. Hum Evol. 15: 369–386.CrossRefGoogle Scholar
  31. De Beer, G. R., 1930, Embryology and Evolution, Clarendon, Oxford.Google Scholar
  32. Delson, E., and Andrews, P., 1975, Evolution and interrelationships of the catarrhine primates, in: Phylogeny of the Primates (W. P. Luckett and F. S. Szalay, eds.), pp. 405–446, Plenum Press, New York.CrossRefGoogle Scholar
  33. Drickamer, L. C., 1981, Selection for age of sexual maturation in mice and the consequences for population regulation, Behav. Neural Biol. 31: 82–89.PubMedCrossRefGoogle Scholar
  34. Dullemeijer, P., 1975, Bolk’s foetalization theory, Acta Morphol. Neerl. Scand 13: 77–86.PubMedGoogle Scholar
  35. Fedigan, L. M., 1982, Primate Paradigms: Sex Roles and Social Bonds, Eden Press, Montreal.Google Scholar
  36. Fenart, R., and Deblock, R., 1973, Pan paniscus et Pan troglodytes Craniometrie, Étude Comparative et Ontogénetique selon les méthodes classiques et vestibulaire, Mus. Roy. Afrique Central, Ann. Ser. in 8°, Sci. Zool, 204: 1–473.Google Scholar
  37. Fink, W. L., 1982, The conceptual relationship between ontogeny and phylogeny, PaleobioJogy 8: 254–264.Google Scholar
  38. Fleagle, J. G., and Kay, R. F., 1983, New interpretations of the phyletic position of Oligocene hominoids, in: New Interpretations of Ape and Human Ancestry (R. L. Ciochon and R. S. Corruccini, eds.), pp. 181–210, Plenum Press, New York.CrossRefGoogle Scholar
  39. Ford, S., 1980, Callithricids as phyletic dwarfs, and the place of the Callithricidae in the Platyrrhini, Primates 21: 31–43.CrossRefGoogle Scholar
  40. Frazzetta, T. H., 1975, Complex Adaptations in Evolving Populations, Sinnauer, Sunderland, Massachusetts.Google Scholar
  41. Gautier-Hion, A., 1973, Social and ecological features of Talapoin monkeys: Comparisons with other cercopithecines, in: Comparative Ecology and Behavior of Primates (R. P. Michael and J. H. Crook, eds.), pp. 148–170, Academic Press, London.Google Scholar
  42. Gautier-Hion, A., and Gautier, J.-P., 1976, Croissance, maturite sexuelle et sociale, et reproduction chez les cercopithecines forestiers africains, Folia Primatol. 26: 165–184.PubMedCrossRefGoogle Scholar
  43. Geist, V., 1986, The paradox of the great Irish stags, Nat Hist. 5(3): 54–65.Google Scholar
  44. Ghiglieri, M. P., 1984, The Chimpanzees of Kibale Forest, Columbia University Press, New York.Google Scholar
  45. Goss, R. J., 1964, Adaptive Growth, Academic Press, New York.Google Scholar
  46. Gould, S. J., 1966, Allometry and size in ontogeny and phylogeny, Biol. Rev. 41: 587–640.PubMedCrossRefGoogle Scholar
  47. Gould, S. J., 1971, Geometric similarity in allometric growth: A contribution to the problem of scaling in the evolution of size, Am. Nat. 105: 113–136.CrossRefGoogle Scholar
  48. Gould, S. J., 1974, The evolutionary significance of “bizarre” structures: Antler size and skull size in the “Irish Elk,” Megaloceros giganteus, Evolution 28: 191–220.CrossRefGoogle Scholar
  49. Gould, S. J., 1975, Allometry in primates, with emphasis on scaling and the evolution of the brain, in: Approaches to Primate Paleobiology (F. S. Szalay, ed.), pp. 244–292, Karger, Basel.Google Scholar
  50. Gould, S. J., 1977, Ontogeny and Phylogeny, Harvard University Press, Cambridge.Google Scholar
  51. Gould, S. J., and Lewontin, R. C., 1979, The spandrels of San Marco and the Panglossian paradigm: A critique of the adaptationist programme, Proc. R. Soc. Lond. B 205: 481–598.CrossRefGoogle Scholar
  52. Hall, B. K., 1983, Epigenetic control in development and evolution, in: Development and Evolution (B. C. Goodwin, N. Holder, and C. G. Wylie, eds.), pp. 353–379, Cambridge University Press, Cambridge.Google Scholar
  53. Hall, B. K., 1984, Developmental processes underlying heterochrony as an evolutionary mechanism, Can. J. Zool. 62: 1–7.CrossRefGoogle Scholar
  54. Hall, K., Sara, V. R., Enberg, G., and Ritzen, E. M., 1981, Somatomedins and postnatal growth, in: Biology of Normal Human Growth (E. M. Ritzen, K. Hall, A. Zetterberg, A. Aperia, A. Larsson, and R. Zetterstrom, eds.), pp. 275–283, Raven Press, New York.Google Scholar
  55. Hanken, J., 1982, Appendicular skeletal morphology in minute salamaders, genus Thorius (Amphibia: Plethodontidae): Growth regulation, adult size determination, and natural variation, J. Morphol. 174: 57–77.CrossRefGoogle Scholar
  56. Herschkovitz, P., 1977, New World Monkeys (Platyrrhinil), Vol. 1, University of Chicago Press, Chicago.Google Scholar
  57. Hiernaux, J., 1968, La Diversité Humaine en Afrique Subsaharienne, Recherches Biologiques, Institut de Sociologie de l’Université Libre de Bruxelles, Brussels.Google Scholar
  58. Hiernaux, J., 1977, Long-term biological effects of human migration from the African savana to the equatorial forest: A case study of human adaptation to a hot and wet climate, in: Population Structure and Human Variation (G. A. Harrison, ed.), pp. 187–217, Cambridge University Press, London.Google Scholar
  59. Hintz, R. L., 1985, Control mechanisms of prenatal bone growth, in: Normal and Abnormal Bone Growth (A. Dixon and B. G. Sarnat, eds.), pp. 25–34, Liss, New York.Google Scholar
  60. Holt, A. B., Cheek, D. B., Mellitus, E. D., and Hill, D. G., 1975, Brain size and the relation of the primate to the nonprimate, in: Fetal and Postnatal Cellular Growth: Hormones and Nutrition (D. B. Cheek, ed.), pp. 23–44, John Wiley, New York.Google Scholar
  61. Horn, A. D., 1975, Adaptations of the pygmy chimpanzee (Pan paniscus) to the forests of the Zaire Basin, Am. J. Phys. Anthropol. 42:307.Google Scholar
  62. Huxley, J. S., 1932, Problems of Relative Growth, MacVeagh, London.Google Scholar
  63. Jarman, P., 1983, Mating system and sexual dimorphism in large, terrestrial, mammalian herbivores, Biol. Rev. 58: 485–520.CrossRefGoogle Scholar
  64. Jerison, H. J., 1979, Brain, body and encephalization in early primates, J. Hum. Evol. 8: 615–635.CrossRefGoogle Scholar
  65. Jungers, W. L., and Susman, R. L., 1984, Body size and skeletal allometry in African apes, in: The Pygmy Chimpanzee: Evolutionary Biology and Behavior (R. L. Susman, ed.), pp. 131–178, Plenum Press, New York.Google Scholar
  66. Kano, T., 1980, The social group of pygmy chimpanzees (Pan paniscus) of Wamba, Primates 23: 171–188.CrossRefGoogle Scholar
  67. Katz, M. J., 1980, Allometry formula: A cellular model, Growth 44: 89–96.PubMedGoogle Scholar
  68. Kollman, J., 1905, Neue Gedanken uber das alter Problem von der Abstammung des Menschen, Corresp.-Bl. Deutsch. Ges. Anthropol. Ethnol. Urges. 36: 9–20.Google Scholar
  69. Kuroda, S., 1980, Social behavior of the pygmy chimpanzees, Primates 20: 161–183.CrossRefGoogle Scholar
  70. Kuroda, S., 1986, Developmental retardation and behavioral characteristics in the pygmy chimpanzees, Paper presented at the symposium, Understanding Chimpanzees, November 1986, Chicago Academy of Sciences.Google Scholar
  71. Laitman, J. T., and Crelin, E. S., 1980, Developmental change in the upper respiratory system of human infants, Perinatol. Neonatol. 4: 15–22.Google Scholar
  72. Laitman, J. T., and Heimbuch, R. C., 1982, The basicranium of Plio-Pleistocene hominids as an indicator of their upper respiratory systems, Am. J. Phys. Anthropol. 59:323–343.PubMedCrossRefGoogle Scholar
  73. Laitman, J. T., and Heimbuch, R. C., 1984, A measure of basicranial flexion in Pan paniscus, the pygmy chimpanzee, in: The Pygmy Chimpanzee (R. L. Susman, ed.), pp. 49–64, Plenum Press, New York.CrossRefGoogle Scholar
  74. Laitman, J. T., Heimbuch, R. C., and Crelin, E. S., 1978, Developmental change in a basicranial line and its relationship to the upper respiratory system in living primates, Am. J. Anat. 152: 467–482.PubMedCrossRefGoogle Scholar
  75. Lande, R., 1979, Quantitative genetic analysis of multivariate evolution, applied to brain:body allometry, Evolution 33: 402–416.CrossRefGoogle Scholar
  76. Lande, R., 1982, A quantitative genetic theory of life history evolution, Ecology 63: 607–615.CrossRefGoogle Scholar
  77. Lauder, G. V., 1981, Form and function: Structural analysis in evolutionary morphology, Paleobiology 7: 430–442.Google Scholar
  78. Leutenegger, W., 1977, Neonatal-maternal weight relationship in macaques: An example of intrageneric scaling, Folia Primatol. 27: 153–159.CrossRefGoogle Scholar
  79. Leutenegger, W., 1980, Monogamy in callitrichids: A consequence of phyletic dwarfism? Int. J. Primatol. 11:95–98.CrossRefGoogle Scholar
  80. Leutenegger, W., 1984, Encephalization in Proconsul africanus, Nature 309:287.CrossRefGoogle Scholar
  81. Leutenegger, W., and Larson, S., 1985, Sexual development of the postcranial skeleton of New World monkeys, Folia Primatol. 44: 82–95.PubMedCrossRefGoogle Scholar
  82. Levitch, L. C., 1986, Ontogenetic allometry of small-bodied platyrrhines, Am. J. Phys. Anthropol. 69: 230.Google Scholar
  83. Lieberman, P., 1984, The Biology and Evolution of Language, Harvard University Press, Cambridge.Google Scholar
  84. Manley-Buser, K. A., 1986, A heterochronic study of the human foot. Am. J. Phys. Anthropol. 69: 235.Google Scholar
  85. Marquer, P., 1972, Nouvelle contribution a l’étude du squelette des pygmées occidentaux du centre Africain comparé à celui des pygmées orientaux, Mem. Nat. Hist. A 72: 1–122.Google Scholar
  86. McHenry, M., and Corruccini, R. S., 1981, Pan paniscus and human evolution, Am. J. Phys. Anthrop. 54: 355–367.CrossRefGoogle Scholar
  87. McKinney, M. L., 1984, Allometry and heterochrony in an Eocene echinoid lineage: Morphological change as a byproduct of size selection, Paleobiology 10: 407–419.Google Scholar
  88. McKinney, M. L., and Schoch, R. M., 1985, Titanothere allometry, heterochrony, and biomechanics: Revising an evolutionary classic, Evolution 39: 1352–1363.CrossRefGoogle Scholar
  89. McNamara, K. J., 1986, A guide to the nomenclature of heterochrony, J. Paleontol. 60: 4–13.Google Scholar
  90. Merimee, T. J., Zapf, J., and Froesch, E. R., 1982, Insulin-like growth factors (IGFs) in pygmies and subjects with the pygmy trait: Characterization of the metabolic actions of IGFI and IGFII in man, J. Clin. Endocrinol. Metab. 55: 1081–1088.PubMedCrossRefGoogle Scholar
  91. Mobb, G. E., and Wood, B. A., 1977, Allometry and sexual dimorphism in the primate innominate bone, Am. J. Anat. 150: 531–538.PubMedCrossRefGoogle Scholar
  92. Montagu, M. F. A., 1962, Time, morphology, and neoteny in the evolution of man, in: Culture and the Evolution of Man (M. F. A. Montagu, ed.), pp. 324–342, Oxford University Press, New York.Google Scholar
  93. Montagu, M. F. A., 1981, Growing Young, McGraw-Hill, New York.Google Scholar
  94. Moss, M. L., Moss-Salentijn, L., Vilmann, H., and Newell-Morriss, L., 1982, Neuro-skeletal topology of the primate basicranium: its implications for the “fetalization hypothesis,” Gegenbaurs morph Jahrb., Leipzig 128: 58–67.Google Scholar
  95. Palmiter, R. D., Norstedt, G., Gelinas, R. E., Hammer, R. E., and Brinster, R. L., 1982, Metallothioneinhuman GH fusion genes stimulate growth in mice, Science 222: 809–814.CrossRefGoogle Scholar
  96. Pilbeam, D. R., and Gould, S. J., 1974, Size and scaling in human evolution, Science 186: 892–901.PubMedCrossRefGoogle Scholar
  97. Radinsky, L., 1973, Aegyptopithecus endocasts: oldest record of a pongid brain, Am. J. Phys. Anthrop. 39: 239–248.PubMedCrossRefGoogle Scholar
  98. Raemakers, J., 1984, Large versus small gibbons: Relative roles of bioenergetics and competition in their ecological segregation in sympatry, in: The Lesser Apes (H. Preuschoft, D. J. Chivers, W. Y. Brockelman, and N. Creel, eds.), pp. 209–218, Edinburgh University Press, Edinburgh.Google Scholar
  99. Rails, K., 1977, Sexual dimorphism in mammals: Avian models and unanswered questions, Am. Nat. 111: 917–938.CrossRefGoogle Scholar
  100. Riska, B., 1986, Some models for development, growth, and morphometric correlation, Evolution 40: 1303–1311.CrossRefGoogle Scholar
  101. Riska, B., and Atchley, W. R., 1985, Genetics of growth predict patterns of brain-size evolution, Science 229: 668–671.PubMedCrossRefGoogle Scholar
  102. Robinson, J. T., 1972, Early Hominid Posture and Locomotion, University of Chicago Press, Chicago.Google Scholar
  103. Rodman, P. S., 1984, Foraging and social systems of orangutans and chimpanzees, in: Adaptations for Foraging in Nonhuman Primates (P. S. Rodman and J. G. H. Cant, eds.), pp. 161–194, Columbia University Press, New York.Google Scholar
  104. Rowell, T. E., 1977, Variation in age at puberty in monkeys, Folia Primatol. 27:284–296.PubMedCrossRefGoogle Scholar
  105. Schultz, A. H., 1933, Observations on the growth, classification, and evolutionary specializations of gibbons and siamangs, Hum. Biol. 5: 212–255.Google Scholar
  106. Schultz, A. H., 1969, The Life of Primates, Universe Books, New York.Google Scholar
  107. Shea, B. T., 1981, Relative growth of the limbs and trunk in the African apes, Am. J. Phys. Anthropol. 56: 179–202.PubMedCrossRefGoogle Scholar
  108. Shea, B. T., 1982, Growth and size allometry in the African Pongidae: Cranial and postcranial analyses, Ph.D. dissertation, Duke University, Durham, North Carolina.Google Scholar
  109. Shea, B. T., 1983a, Phyletic size change and brain/body scaling: A consideration based on the African pongids and other primates, Int. J. Primatol. 4:33–62.CrossRefGoogle Scholar
  110. Shea, B. T., 1983b, Size and diet in the evolution of African ape craniodental form, Folia Primatol. 40: 32–68.PubMedCrossRefGoogle Scholar
  111. Shea, B. T., 1983c, Paedomorphosis and neoteny in the pygmy chimpanzee, Science 222:521–522.PubMedCrossRefGoogle Scholar
  112. Shea, B. T., 1983d, Allometry and heterochrony in the African apes, Am. J. Phys. Anthropol. 62: 275–289.PubMedCrossRefGoogle Scholar
  113. Shea, B. T., 1984, An allometric perspective on the morphological and evolutionary relationships between pygmy (Pan paniscus) and common (Pan troglodytes) chimpanzees, in: The Pygmy Chimpanzee: Evolutionary Biology and Behavior (R. L. Susman, ed.), pp. 89–130, Plenum Press, New York.CrossRefGoogle Scholar
  114. Shea, B. T., 1985a, Ontogenetic allometry and scaling: A discussion based on the growth and form of the skull in African apes, in: Size and Scaling in Primate Biology (W. L. Jungers, ed.), pp. 175–206, Plenum Press, New York.Google Scholar
  115. Shea, B. T., 1985b, The ontogeny of sexual dimorphism in the African apes, Am. J. Primatol. 8: 183–188.CrossRefGoogle Scholar
  116. Shea, B. T., 1986a, Scapula form and locomotion in chimpanzee evolution, Am. J. Phys. Anthropol. 70: 475–488.CrossRefGoogle Scholar
  117. Shea, B. T., 1986b, Ontogenetic approaches to sexual dimorphism in anthropoids, Hum. Evol. 1: 97–110.CrossRefGoogle Scholar
  118. Shea, B. T., in press, Neoteny and heterochrony in human evolution, in: The Cambridge Encyclopedia of the Human Species (R. D. Martin, D. Pilbeam, and S. Jones, eds.), Cambridge University Press, Cambridge.Google Scholar
  119. Shea, B. T., and Groves, C. P., 1987, Evolutionary implications of size and shape Variation in the genus Pan, Am. J. Phys. Anthropol. 72: 253.Google Scholar
  120. Shea, B. T., and Pagezy, H., 1988, Allometric analyses of body form in Central African pygmies, Amer. J. Phys. Anthrop. 75:269–270 (Abstract).Google Scholar
  121. Shea, B. T., Hammer, R. E., and Brinster, R. L., 1987, Growth allometry of the organs in giant transgenic mice, EndocrinoJogy 121: 1–7.CrossRefGoogle Scholar
  122. Shea, B. T., Hammer, R. E., and Brinster, R. L., in preparation, Cranial and postcranial skeletal growth allometries in giant transgenic mice.Google Scholar
  123. Simpson, G. G., 1953, The Major Features of Evolution, Columbia University Press, New York.Google Scholar
  124. Smith, B. H., 1986, Dental development in Australopithecus and early Homo, Nature 323: 327–330.CrossRefGoogle Scholar
  125. Starck, D., 1962, Der heutige Stand des Fetalisations-problems, Paul Parey, Hamburg.Google Scholar
  126. Susman, R. L., Badrian, N. L., and Badrian, A. I., 1980, Locomotor behavior of Pan paniscus in Zaire, Am. J. Phys. Anthropol. 53: 69–80.CrossRefGoogle Scholar
  127. Tutin, C. E. G., and Fernandez, M., 1985, Foods consumed by sympatric populations of Gorilla g. gorilla and Pan t. troglodytes in Gabon: Some preliminary data, Int. J. Primatol. 6: 27–43.CrossRefGoogle Scholar
  128. Van de Koppel, J. M. H., and Hewlett, B. S., 1986, Growth of Aka pygmies and Bagandus of the Central African Republic, in: African Pygmies (L. L. Cavalli-Sforza, ed.), pp. 95–102, Academic Press, New York.Google Scholar
  129. Verheyen, W. N., 1962, Contribution a la craniologie comparée des primates, Mus. R. A/r. Cent. Tervuren BeJg. Ann. Ser. Octav. Ser. Zool. 105: 1–247.Google Scholar
  130. Wake, D. B., 1980, Evidence of heterochronic evolution: A nasal bone in the Olympic salamander, Rhyacotriton olympicus, J. Herpetol. 14: 292–295.CrossRefGoogle Scholar
  131. Wake, D. B., 1982, Functional and evolutionary morphology, Perspect. Biol. Med. 25: 603–620.PubMedGoogle Scholar
  132. Walker, A., Falk, D., Smith, R., and Pickford, M., 1983, The skull of Proconsul africanus: Reconstruction and cranial capacity, Nature 305: 525–527.CrossRefGoogle Scholar
  133. Wayne, R. K., 1986, Cranial morphology of domestic and wild canids: The influence of development on morphological change, Evolution 40: 243–261.CrossRefGoogle Scholar
  134. Wiedenreich, F., 1941, The brain and its role in the phylogenetic transformation of the human skull, Trans. Am. Philos. Soc. 31: 321–442.Google Scholar
  135. Wiley, R. H., 1974, Evolution of social organization and life-history patterns among grouse, Q. Rev. Biol. 49: 201–227.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1988

Authors and Affiliations

  • Brian T. Shea
    • 1
  1. 1.Departments of Anthropology and Cell Biology and AnatomyNorthwestern UniversityChicagoUSA

Personalised recommendations