Skip to main content

Heterochrony in Gastropods

A Paleontological View

  • Chapter
Heterochrony in Evolution

Part of the book series: Topics in Geobiology ((TGBI,volume 7))

Abstract

Fossil gastropods seem to be ideally suited for studies of heterochrony. The description and analysis of heterochrony in evolutionary sequences require a detailed understanding of the ontogeny of the organisms involved. Not only must the ontogeny be well-preserved in its entirety, but the basic parameters underlying growth must be amenable to quantitative description. In a gastropod shell, most, or frequently all, of an individual’s ontogeny is recorded. The gastropod shell grows by continued accretion of new material onto the previously existing shell, so that the form of the juvenile is generally intact and part of the adult shell. Furthermore, there is no question about which juvenile form grew into which adult form, as there might be with organisms that molt, such as ostracodes and trilobites.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alberch, P., 1985, Problems with the interpretation of developmental sequences, Syst. Zool. 34: 46–58.

    Article  Google Scholar 

  • Alberch, P., Gould, S. J., Oster, G. F., and Wake, D. B., 1979, Size and shape in ontogeny and phylogeny, Paleobiology 5: 296–317.

    Google Scholar 

  • Ball, J. R., 1935, Dwarfed gastropods in the basal Guttenberg, Southwestern Wisconsin, (abs.), Geol. Soc. Am. Proc. 1935:384.

    Google Scholar 

  • Boettger, C. R., 1952, Grossenwachstum und Geschlechtsreife bei Schnecken und pathologischer Riesenwuchs als Folge einer gestorten Wechselwirkung beider Faktoren, Zool. Anz. 17(suppl.):468–487.

    Google Scholar 

  • Britton, E. R., and Stanton, R. J., Jr., 1973, Origin of “dwarfed” fauna in the Del Rio Formation, Lower Cretaceous, east central Texas, in: Geological Society of America, Abstracts with Program, Vol. 5, pp. 248–249.

    Google Scholar 

  • Comfort, A., 1951, The pigmentation of molluscan shells, Biol. Rev. 26: 285–301.

    Article  CAS  Google Scholar 

  • Crabb, E. D., 1929, Growth of a pond snail Lymnaea stagnalis appressa as indicated by increase of shell-size, Biol. Bull. 56: 41–63.

    Article  Google Scholar 

  • Elias, M. K., 1958, Late Mississippian fauna from the Redoak Hollow Formation of Southern Oklahoma, J. Paleontol. 32: 1–57.

    Google Scholar 

  • Geary, D. H., 1986, The evolutionary radiation of melanopsid gastropods in the Pannonian Basin (Late Miocene, Eastern Europe), Ph.D. dissertation, Harvard University, Cambridge, Massachusetts.

    Google Scholar 

  • Ginda, V. A., 1976, The dwarf gastropods in the Ordovician Baltic Basin, Paleontol. Sb. (L’vov) 13: 51–55.

    Google Scholar 

  • Gould, S. J., 1968, Ontogeny and the explanation of form: An allometric analysis, Paleontol. Soc. Mem. 2: 81–98.

    Google Scholar 

  • Gould, S. J., 1969, An evolutionary microcosm: Pleistocene and Recent history of the land snail P. (Poecilozonites) in Bermuda, Bull. Mus. Comp. Zool. 138: 407–532.

    Google Scholar 

  • Gould, S. J., 1970, Land snail communities and Pleistocene climates in Bermuda: A multivariate analysis of microgastropod diversity, in: Proceedings North American Paleoontology Convention, Part E, pp. 486-521.

    Google Scholar 

  • Gould, S. J., 1977, Ontogeny and Phylogeny, Harvard University Press, Cambridge.

    Google Scholar 

  • Gould, S. J., 1984, Morphological channeling by structural constraint: Convergence in styles of dwarfing and gigantism in Cerion, with a description of two new fossil species and a report on the discovery of the largest Cerion, Paleobiology 10: 172–194.

    Google Scholar 

  • Hallam, A., 1965, Environmental causes of stunting in living and fossil marine benthonic invertebrates, Palaeontology 8: 132–155.

    Google Scholar 

  • Hoare, R. D., and Sturgeon, M. T., 1978, The Pennsylvanian gastropod genera Cyclozyga and Helminthozyga and the classification of the Pseudozygopleuridae, J. Paleontol. 52: 850–858.

    Google Scholar 

  • Majima, R., 1985, Intraspecific variation in three species of Glossaulax (Gastropoda, Naticidae) from the Late Cenozoic strata in central and southwest Japan, Trans. Proc. Palaeontol. Soc. Japan (N. S.) 0(138):111–137.

    Google Scholar 

  • Mancini, E. A., 1978a, Origin of micromorph faunas in the geologic record, J. Paleontol. 52: 311–322.

    Google Scholar 

  • Mancini, E. A., 1978b, Origin of the Grayson micromorph fauna (Upper Cretaceous) of North Central Texas, J. Paleontol. 52: 1294–1314.

    Google Scholar 

  • McKinney, M. L., 1986, Ecological causation of heterochrony: A test and implications for the study of chronoclines, Paleobiology 12: 282–289.

    Google Scholar 

  • McNamara, K. J., 1986, A guide to the nomenclature of heterochrony, J. Paleontol. 60: 4–13.

    Google Scholar 

  • Pampe, W. R., 1979, A dwarfed fauna from the Grayson Formation near Lake Waco, Texas, Earth Sci. Bull. 12: 18–32.

    Google Scholar 

  • Raup, D. M., 1961, The geometry of coiling in gastropods, Proc. Natl. Acad. Sci. USA 47: 602–609.

    Article  PubMed  CAS  Google Scholar 

  • Raup, D. M., 1966, Geometric analysis of shell coiling: General problems, J. Paleontol. 40: 1178–1190.

    Google Scholar 

  • Raup, D. M., and Michelson, A., 1965, Theoretical morphology of the coiled shell, Science 147: 1294–1295.

    Article  PubMed  CAS  Google Scholar 

  • Snyder, J., and Bretsky, P. W., 1971, Life habits of diminutive bivalve molluscs in the Maquoketa Formation (Upper Ordovician), Am. J. Sci. 271: 227–251.

    Article  Google Scholar 

  • Stauffer, C. R., 1937, A diminutive fauna from the Shakopee Formation at Cannon Falls, Minn., J. Paleontol. 11: 55–60.

    Google Scholar 

  • Tasch, P., 1953, Causes and paleoecological significance of dwarfed fossil marine invertebrates, J. Paleontol. 27: 356–444.

    Google Scholar 

  • Thompson, D’A. W., 1942, On Growth and Form, Cambridge University Press, Cambridge.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer Science+Business Media New York

About this chapter

Cite this chapter

Geary, D. (1988). Heterochrony in Gastropods. In: McKinney, M.L. (eds) Heterochrony in Evolution. Topics in Geobiology, vol 7. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0795-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0795-0_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-0797-4

  • Online ISBN: 978-1-4899-0795-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics