Advertisement

The Oxidation of Silicides on Silicon

  • F. M. d’Heurle

Abstract

Under proper care the oxidation of silicide films formed over silicon substrates results in the formation of metal-free layers of silicon oxide. The silicide layers themselves appear to be unaffected by the oxidation process. The overall kinetic and thermodynamic conditions which make this possible are reviewed. The growth of the oxide is always faster over the silicides than over (100) silicon, but semiconducting silicides with large band gaps oxidize almost as slowly as silicon, whereas silicides with a strongly metallic character oxidize rapidly. Other factors such as whether the formation of the oxide layers occurs from the direct diffusion of silicon atoms or through the decomposition (followed by the reconstitution) of the silicide are considered. Some attention is also paid to such problems as that of the formation and behavior of point defects generated by the silicidation and oxidation processes.

Keywords

Point Defect Silicon Atom Thermal Oxidation Oxide Growth Silicide Formation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abba, A., Galerie, A., and Caillet, M., 1982, High-temperature oxidation of titanium silicide coatings on titanium, Oxidation of Metals 17, 43.CrossRefGoogle Scholar
  2. Adda, Y., and Philibert, J., 1987, Tendances actuelles des études de diffusion en métallurgie physique et en science des matériaux, Mém. Sci. Revue de Métallurgie, 84, 293.Google Scholar
  3. Badoz, P. A., Rosencher, E., Torres, J. and Fishman, G., 1987, Insulating, metallic and semimetallic electronic nature of XSi2 compounds: Application to WSi2, J. Appl. Phys. 62, 890.Google Scholar
  4. Bartlett, R. W., Gage, P. R., and Larssen, P. A., Growth kinetics of intermediate silicides in the MoSi2/Mo and WSi2/W systems, Trans. Met. Soc. AIME 230, 1528.Google Scholar
  5. Bartur, M., 1983, Thermal oxidation of transition metal silicides: the role of mass transport, Thin Solid Films 107, 55.CrossRefGoogle Scholar
  6. Bartur, M., and Nicolet, M.-A., 1984, Properties of Si02 grown on Ti, Co, Ni, Pd and Pt silicides, J. Electron. Mater. 13, 81.Google Scholar
  7. Beyers, R., 1984, Thermodynamic considerations in refractory metal-silicon-oxygen systems, J. Appl. Phys. 56, 147.Google Scholar
  8. Beyers, R., Sinclair, R., and Thomas, M. E., 1984, Phase equilibria in thin-film metallizations, J. Vac. Sci. Technol. B 2, 781.Google Scholar
  9. Bost, M. C. and Mahan, J. E., 1988, An investigation of the optical constants and band gap of chromium disilicide, J. Appl. Phys. 63, 839.Google Scholar
  10. Chambers, S. A., Anderson, S. B., Chen, H. W., and Weaver, J. H., 1986, High-temperature nucleation and silicide formation at the Co/Si (111)-7x7 interface: A structural investigation, Phys. Rev. B 34, 913.Google Scholar
  11. Chang, Y.-J., and Erskine, J., 1982, Electronic structure of NiSi2, Phys. Rev. B 26, 7031.Google Scholar
  12. Crowder, B. L., and Zirinsky, S., 1979, 1µm MOSFET VLSI technology: Part VII - Metal silicide interconnection technology - A future perspective, IEEE J. Solid State Circuits SC-14, 291.Google Scholar
  13. Cros, A., Derrien, J., and Salvan, F., 1981, Cu-Si (111) interfaces: oxidation properties in relation with their structural properties, Surf. Sci. 152 /153, 1239.Google Scholar
  14. d’Heurle, F. M., 1982, in VLSI Science and Technology/1982 edited by C. Dell’Oca and W. M. Bullis, The Electrochemical Society, Pennington, N. J., p. 194; 1987, Formation and oxidation mechanisms in two semiconducting silicides, Thin Solid Films, 151, 41.Google Scholar
  15. d’Heurie, F. M., and Gas, P., 1986, Kinetics of formation of silicides: A review, J. Mater. Res. 1, 205.Google Scholar
  16. d’Heurle, F. M., Cros, A., Frampton, R. D., and Irene, E. A., 1987, Thermal oxidation of silicides on silicon, Philos. Mag. B 55, 291.Google Scholar
  17. Fahey, P., and Dutton, R. W., 1988, Investigation of point defect generation in silicon during oxidation of a deposited WSi2 layer, Appl. Phys. Lett. 52, 1092.Google Scholar
  18. Finstad, T., Thomas, O., and d’Heurle, F. M., 1988, unpublished results.Google Scholar
  19. Frampton, R., 1987, Thermal Oxidation Kinetics of Metal Silicides on Silicon, Thesis, University of North Carolina, Chapel Hill.Google Scholar
  20. Frampton, R. D., Irene, E. A., and d’Heurle, F. M., 1987, A study of the oxidation of selected metal silicides, J. Appl. Phys. 62, 2972.Google Scholar
  21. Gage, P. R., and Bartlett, R. W., 1965 a, Diffusion kinetics affecting formation of silicide coatings on molybdenum and tungsten, Trans. Met. Soc. AIME 233, 832; 1965 b, Oxidation of molybdenum silicides at high temperatures and low pressures, Trans. Met. Soc. AIME. 233, 968.Google Scholar
  22. Gibbs, G. B., 1981, On the influence of metal lattice diffusion on oxidation of metals and alloys, Oxidation of Metals 16, 147.CrossRefGoogle Scholar
  23. Göltz, G., and Ferrieu, F., 1987, Thermal oxidation of WSi2-polycide and the characterization of the oxide layer, Le Vide-Les Couches Minces, 42–236, 183.Google Scholar
  24. Hu, S. M., 1987, Point defect generation and enhanced diffusion in silicon due to tantalum silicide overlays, Appl. Phys. Lett. 51, 2368.Google Scholar
  25. Hudner, J., Jiang, H.,and Petersson, C. S., 1987, Marker experiments in the Cr/Si-system-formation and oxidation, Le Vide -Les Couches Minces, 42–236, 63.Google Scholar
  26. Irene, E. A. and Ghez, R., 1987, Thermal oxidation of silicon: new experimental results and models, Applied Surface Science 30, 1.CrossRefGoogle Scholar
  27. Irene, E. A., and Lewis, E. A., 1987, Thermionic emmission model for the initial regime of silicon oxidation, Appl. Phys.Lett. 51, 767.Google Scholar
  28. Jiang, H., Petersson, C. S., and Nicolet, M.-A., 1986, Thermal oxidation of transition metal silicides, Thin Solid Films, 140, 115.CrossRefGoogle Scholar
  29. Kofstad, Per, 1966, High-Temperature Oxidation of Metals, John Wiley, New York, p. 310.Google Scholar
  30. Krontiras, Ch., Grönberg, L., Suni, I., d’Heurle, F. M., Tersoff, J., Engström, I., Petersson, C. S., and Karlsson, B., 1988, Some properties of ReSi2, Thin Solid FilmsGoogle Scholar
  31. Laborde, O., Thomas, O., Senateur, J. P., and Madar, R., 1986, Resistivity and magnetoresistance of high-purity monocrystalline MoSi2, J. Phys. F: Met. Phys. 16, 1745.Google Scholar
  32. Leroy, B., 1987, Stresses and silicon interstitials during the oxidation of a silicon substrate, Philos. Mag. 55 B, 159.Google Scholar
  33. Levich, V. G., 1962, Physicochemical Hydrodynamics, Prentice-Hall, Englewood Cliffs, N. J., pp. 72–78.Google Scholar
  34. Lien, C.-D., Bartur, M., and Nicolet, M.-A., 1984, Marker experiments for the moving species in silicides during solid phase epitaxy of evaporated Si, Mater. Res. Soc. Symp. Proc. 25, 51.Google Scholar
  35. Mochizuki, T., Shibate, K., Inoue, T., and Ohuchi, K., 1978, A new MOS process using MoSi2 as a gate material, Jpn. J. Appl. Phys. 17 Suppl. 17–1, 37.Google Scholar
  36. Nicolet, M.-A., and Lau, S. S., 1983, Formation and characterization of transition metal silicides, in VLSI Electronics: Microstructure Science, vol. 6 edited by N. G. Einspruch and G. B. Larrabee, Academic Press, New York, p. 330.Google Scholar
  37. Perkins, R. A., 1964, in The Science and Technology of Molybdenum, Tungsten, Niobium, and Tantalum and their Alloys edited by N. E. Promisel, Pergamon, London.Google Scholar
  38. Perrière, J., Pelloie, B., and Siejka, 1987, J., Ionic movement during oxide growth by plasma anodization, Philos. Mag. B 55, 271.Google Scholar
  39. Petersson, C. S., Reimer, J. A., Brodsky, M. H., Campbell, D. R., d’Heurle, F. M., Karlsson, B., and Tove, P. A., 1982, IrSit 75 a new semiconducting compound, J. Appl. Phys. 53, 3342.Google Scholar
  40. Rouse, J., Mohammadi, F., Helms, C. R., and Saraswat, K. C., 1980, Studies of steam-oxidized WSi2 by Auger sputter profiling, Appl. Phys. Lett. 37, 305.Google Scholar
  41. Tersoff, J., and Hamann, D. R., 1983, Bonding and structure of CoSi2 and NiSi2, Phys. Rev. B 28, 1168.Google Scholar
  42. Thomas, O., Gas, P., Charai, A., d’Heurle, F. M., LeGoues, F. K., Michel, A., and Scilla, G., 1988, Diffusion of elements implanted in films of CoSi2, submitted to J. Appl. Phys..Google Scholar
  43. Wagner, C., 1952, Theoretical analysis of the diffusion processes determining the oxidation rate of alloys, J. Electrochem. Soc. 99, 369.Google Scholar
  44. Wakita, A. S., Sigmon, T. W., and Gibbons, J. F., 1984, Effects of impurities on the oxidation of MoSi2 on silicon, Appl. Phys. Lett. 45, 140.Google Scholar
  45. Wang, W. S., Jona, F., and Marcus, P. M., 1983, Formation and structure of epitaxial nickel silicide on Si (111), Phys. Rev. B 28, 7377.Google Scholar
  46. Wen, D. S., Smith, P. L., Osburn, C. M., and Rozgonyi, G. A., 1987, Defect annihilation in shallow p+ junctions using titanium silicide, Appl. Phys. Lett. 51, 1182.Google Scholar

Copyright information

© Springer Science+Business Media New York 1988

Authors and Affiliations

  • F. M. d’Heurle
    • 1
    • 2
  1. 1.IBM T. J. Watson Research CenterYorktown HeightsUSA
  2. 2.Institutionen för MikrovagsteknikKungliga Tekniska HögskolanStockholmSweden

Personalised recommendations