Skip to main content

The Oxidation of Silicides on Silicon

  • Chapter
  • 675 Accesses

Abstract

Under proper care the oxidation of silicide films formed over silicon substrates results in the formation of metal-free layers of silicon oxide. The silicide layers themselves appear to be unaffected by the oxidation process. The overall kinetic and thermodynamic conditions which make this possible are reviewed. The growth of the oxide is always faster over the silicides than over (100) silicon, but semiconducting silicides with large band gaps oxidize almost as slowly as silicon, whereas silicides with a strongly metallic character oxidize rapidly. Other factors such as whether the formation of the oxide layers occurs from the direct diffusion of silicon atoms or through the decomposition (followed by the reconstitution) of the silicide are considered. Some attention is also paid to such problems as that of the formation and behavior of point defects generated by the silicidation and oxidation processes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abba, A., Galerie, A., and Caillet, M., 1982, High-temperature oxidation of titanium silicide coatings on titanium, Oxidation of Metals 17, 43.

    Article  CAS  Google Scholar 

  • Adda, Y., and Philibert, J., 1987, Tendances actuelles des études de diffusion en métallurgie physique et en science des matériaux, Mém. Sci. Revue de Métallurgie, 84, 293.

    Google Scholar 

  • Badoz, P. A., Rosencher, E., Torres, J. and Fishman, G., 1987, Insulating, metallic and semimetallic electronic nature of XSi2 compounds: Application to WSi2, J. Appl. Phys. 62, 890.

    Google Scholar 

  • Bartlett, R. W., Gage, P. R., and Larssen, P. A., Growth kinetics of intermediate silicides in the MoSi2/Mo and WSi2/W systems, Trans. Met. Soc. AIME 230, 1528.

    Google Scholar 

  • Bartur, M., 1983, Thermal oxidation of transition metal silicides: the role of mass transport, Thin Solid Films 107, 55.

    Article  CAS  Google Scholar 

  • Bartur, M., and Nicolet, M.-A., 1984, Properties of Si02 grown on Ti, Co, Ni, Pd and Pt silicides, J. Electron. Mater. 13, 81.

    Google Scholar 

  • Beyers, R., 1984, Thermodynamic considerations in refractory metal-silicon-oxygen systems, J. Appl. Phys. 56, 147.

    Google Scholar 

  • Beyers, R., Sinclair, R., and Thomas, M. E., 1984, Phase equilibria in thin-film metallizations, J. Vac. Sci. Technol. B 2, 781.

    Google Scholar 

  • Bost, M. C. and Mahan, J. E., 1988, An investigation of the optical constants and band gap of chromium disilicide, J. Appl. Phys. 63, 839.

    Google Scholar 

  • Chambers, S. A., Anderson, S. B., Chen, H. W., and Weaver, J. H., 1986, High-temperature nucleation and silicide formation at the Co/Si (111)-7x7 interface: A structural investigation, Phys. Rev. B 34, 913.

    Google Scholar 

  • Chang, Y.-J., and Erskine, J., 1982, Electronic structure of NiSi2, Phys. Rev. B 26, 7031.

    Google Scholar 

  • Crowder, B. L., and Zirinsky, S., 1979, 1µm MOSFET VLSI technology: Part VII - Metal silicide interconnection technology - A future perspective, IEEE J. Solid State Circuits SC-14, 291.

    Google Scholar 

  • Cros, A., Derrien, J., and Salvan, F., 1981, Cu-Si (111) interfaces: oxidation properties in relation with their structural properties, Surf. Sci. 152 /153, 1239.

    Google Scholar 

  • d’Heurle, F. M., 1982, in VLSI Science and Technology/1982 edited by C. Dell’Oca and W. M. Bullis, The Electrochemical Society, Pennington, N. J., p. 194; 1987, Formation and oxidation mechanisms in two semiconducting silicides, Thin Solid Films, 151, 41.

    Google Scholar 

  • d’Heurie, F. M., and Gas, P., 1986, Kinetics of formation of silicides: A review, J. Mater. Res. 1, 205.

    Google Scholar 

  • d’Heurle, F. M., Cros, A., Frampton, R. D., and Irene, E. A., 1987, Thermal oxidation of silicides on silicon, Philos. Mag. B 55, 291.

    Google Scholar 

  • Fahey, P., and Dutton, R. W., 1988, Investigation of point defect generation in silicon during oxidation of a deposited WSi2 layer, Appl. Phys. Lett. 52, 1092.

    Google Scholar 

  • Finstad, T., Thomas, O., and d’Heurle, F. M., 1988, unpublished results.

    Google Scholar 

  • Frampton, R., 1987, Thermal Oxidation Kinetics of Metal Silicides on Silicon, Thesis, University of North Carolina, Chapel Hill.

    Google Scholar 

  • Frampton, R. D., Irene, E. A., and d’Heurle, F. M., 1987, A study of the oxidation of selected metal silicides, J. Appl. Phys. 62, 2972.

    Google Scholar 

  • Gage, P. R., and Bartlett, R. W., 1965 a, Diffusion kinetics affecting formation of silicide coatings on molybdenum and tungsten, Trans. Met. Soc. AIME 233, 832; 1965 b, Oxidation of molybdenum silicides at high temperatures and low pressures, Trans. Met. Soc. AIME. 233, 968.

    Google Scholar 

  • Gibbs, G. B., 1981, On the influence of metal lattice diffusion on oxidation of metals and alloys, Oxidation of Metals 16, 147.

    Article  CAS  Google Scholar 

  • Göltz, G., and Ferrieu, F., 1987, Thermal oxidation of WSi2-polycide and the characterization of the oxide layer, Le Vide-Les Couches Minces, 42–236, 183.

    Google Scholar 

  • Hu, S. M., 1987, Point defect generation and enhanced diffusion in silicon due to tantalum silicide overlays, Appl. Phys. Lett. 51, 2368.

    Google Scholar 

  • Hudner, J., Jiang, H.,and Petersson, C. S., 1987, Marker experiments in the Cr/Si-system-formation and oxidation, Le Vide -Les Couches Minces, 42–236, 63.

    Google Scholar 

  • Irene, E. A. and Ghez, R., 1987, Thermal oxidation of silicon: new experimental results and models, Applied Surface Science 30, 1.

    Article  CAS  Google Scholar 

  • Irene, E. A., and Lewis, E. A., 1987, Thermionic emmission model for the initial regime of silicon oxidation, Appl. Phys.Lett. 51, 767.

    Google Scholar 

  • Jiang, H., Petersson, C. S., and Nicolet, M.-A., 1986, Thermal oxidation of transition metal silicides, Thin Solid Films, 140, 115.

    Article  CAS  Google Scholar 

  • Kofstad, Per, 1966, High-Temperature Oxidation of Metals, John Wiley, New York, p. 310.

    Google Scholar 

  • Krontiras, Ch., Grönberg, L., Suni, I., d’Heurle, F. M., Tersoff, J., Engström, I., Petersson, C. S., and Karlsson, B., 1988, Some properties of ReSi2, Thin Solid Films

    Google Scholar 

  • Laborde, O., Thomas, O., Senateur, J. P., and Madar, R., 1986, Resistivity and magnetoresistance of high-purity monocrystalline MoSi2, J. Phys. F: Met. Phys. 16, 1745.

    Google Scholar 

  • Leroy, B., 1987, Stresses and silicon interstitials during the oxidation of a silicon substrate, Philos. Mag. 55 B, 159.

    Google Scholar 

  • Levich, V. G., 1962, Physicochemical Hydrodynamics, Prentice-Hall, Englewood Cliffs, N. J., pp. 72–78.

    Google Scholar 

  • Lien, C.-D., Bartur, M., and Nicolet, M.-A., 1984, Marker experiments for the moving species in silicides during solid phase epitaxy of evaporated Si, Mater. Res. Soc. Symp. Proc. 25, 51.

    Google Scholar 

  • Mochizuki, T., Shibate, K., Inoue, T., and Ohuchi, K., 1978, A new MOS process using MoSi2 as a gate material, Jpn. J. Appl. Phys. 17 Suppl. 17–1, 37.

    Google Scholar 

  • Nicolet, M.-A., and Lau, S. S., 1983, Formation and characterization of transition metal silicides, in VLSI Electronics: Microstructure Science, vol. 6 edited by N. G. Einspruch and G. B. Larrabee, Academic Press, New York, p. 330.

    Google Scholar 

  • Perkins, R. A., 1964, in The Science and Technology of Molybdenum, Tungsten, Niobium, and Tantalum and their Alloys edited by N. E. Promisel, Pergamon, London.

    Google Scholar 

  • Perrière, J., Pelloie, B., and Siejka, 1987, J., Ionic movement during oxide growth by plasma anodization, Philos. Mag. B 55, 271.

    Google Scholar 

  • Petersson, C. S., Reimer, J. A., Brodsky, M. H., Campbell, D. R., d’Heurle, F. M., Karlsson, B., and Tove, P. A., 1982, IrSit 75 a new semiconducting compound, J. Appl. Phys. 53, 3342.

    Google Scholar 

  • Rouse, J., Mohammadi, F., Helms, C. R., and Saraswat, K. C., 1980, Studies of steam-oxidized WSi2 by Auger sputter profiling, Appl. Phys. Lett. 37, 305.

    Google Scholar 

  • Tersoff, J., and Hamann, D. R., 1983, Bonding and structure of CoSi2 and NiSi2, Phys. Rev. B 28, 1168.

    Google Scholar 

  • Thomas, O., Gas, P., Charai, A., d’Heurle, F. M., LeGoues, F. K., Michel, A., and Scilla, G., 1988, Diffusion of elements implanted in films of CoSi2, submitted to J. Appl. Phys..

    Google Scholar 

  • Wagner, C., 1952, Theoretical analysis of the diffusion processes determining the oxidation rate of alloys, J. Electrochem. Soc. 99, 369.

    Google Scholar 

  • Wakita, A. S., Sigmon, T. W., and Gibbons, J. F., 1984, Effects of impurities on the oxidation of MoSi2 on silicon, Appl. Phys. Lett. 45, 140.

    Google Scholar 

  • Wang, W. S., Jona, F., and Marcus, P. M., 1983, Formation and structure of epitaxial nickel silicide on Si (111), Phys. Rev. B 28, 7377.

    Google Scholar 

  • Wen, D. S., Smith, P. L., Osburn, C. M., and Rozgonyi, G. A., 1987, Defect annihilation in shallow p+ junctions using titanium silicide, Appl. Phys. Lett. 51, 1182.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer Science+Business Media New York

About this chapter

Cite this chapter

d’Heurle, F.M. (1988). The Oxidation of Silicides on Silicon. In: Helms, C.R., Deal, B.E. (eds) The Physics and Chemistry of SiO2 and the Si-SiO2 Interface. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0774-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0774-5_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-0776-9

  • Online ISBN: 978-1-4899-0774-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics