Effects if X Irradiation and High Field Electron Injection on the Properties of Rapid Thermal Oxides

  • W. K. Schubert
  • C. H. Seager


The effects of x-ray exposure and high field electron injection on the electrical properties of capacitors incorporating rapid thermal oxides show a considerable dependence on the particular post oxidation annealing (POA) conditions used during oxide processing. Most important seem to be the POA ambient and temperature. POA temperatures from 1150°C to 800°C have been investigated, with lower temperatures resulting in reduced midgap voltage shifts for a given x-ray dose or injected electron fluence. Low temperature high field injection experiments on the present samples have failed to show a direct conversion from trapped holes to interface states formed after photoinjection of electrons as has been reported for conventionally grown thicker oxides. Rather, the injected electrons seem to simply neutralize the trapped holes, returning the capacitance-voltage curve to near its original position and shape.


Interface State Trap Hole Breakdown Field Interface State Density Injection Level 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    For a review of much of this literature see: “MOS (Metal-OxideSemiconductor) Physics and Technology,” by E. H. Nicollian and J. R. Brews, (John Wiley and Sons, New York, 1982) pp. 549-577 or see the December issues of IEEE Trans. Nucl. Sci. from 1966 to the present.Google Scholar
  2. 2.
    H. E. Boesch and J. M. McGarrity, IEEE Trans. Nucl. Sci. NS-26:4814 (1979).Google Scholar
  3. 3.
    M. Knoll, D. Bräunig, and W. R. Fahrner, J. Appl. Phys. 53:6946 (1982).Google Scholar
  4. 4.
    S. T. Chang, J. K. Wu and S. A. Lyon, Appl. Phys. Lett. 48:662 (1986).Google Scholar
  5. 5.
    C. H. Seager and W. K. Schubert, to be published, J. Appl. Phys. (1988).Google Scholar
  6. 6.
    D. R. Young, E. A. Irene, D. J. DiMaria, and R. F. DeKeersmaecker, J. Appl. Phys. 50: 6366 (1979).CrossRefGoogle Scholar
  7. 7.
    S. Pang, S. A. Lyon, and W. C. Johnson, Appl. Phys. Lett. 40:709 (1982).Google Scholar
  8. 8.
    Z. A. Weinberg, D. R. Young, J. A. Calise, S. A. Cohen, J. C. DeLuca and V. R. Deline, Appl. Phys. Lett. 45:1204 (1984).Google Scholar
  9. 9.
    K. Hofmann, D. R. Young and G. W. Rubloff, J. Appl. Phys. 62:925 (1987).Google Scholar
  10. 10.
    R. R. Razouk and B. E. Deal, J. Electrochem. Soc. 126:1573 (1979)Google Scholar
  11. 11.
    B. E. Deal, J. Electrochem. Soc. 121:198c (1974).Google Scholar
  12. 12.
    W. C. Johnson, IEEE Trans. Nucl. Sci. NS-22:2144 (1975).Google Scholar
  13. 13.
    M. H. Woods and R. Williams, J. Appl. Phys. 47:1082 (1976).Google Scholar
  14. 14.
    P. M. Lenahan and P. V. Dressendorfer, Appl. Phys. Lett. 44:96 (1984).Google Scholar
  15. 15.
    H. S. Witham and P. M. Lenahan, Appl. Phys. Lett. 51:1007 (1987).Google Scholar
  16. 16.
    J. M. McGarrity, P. S. Winokur, H. E. Boesch, Jr., and F. B. McLean in “The Physics of SiO2 and Its Interfaces,” ed. S. T. Pantelides ( Pergamon, New York, 1978 ) p. 428.Google Scholar
  17. 17.
    P. S. Winokur and H. E. Boesch, Jr., IEEE Trans. Nucl. Sci. NS-27: 1647 (1980).Google Scholar
  18. 18.
    F. B. McLean, IEEE Trans. Nucl. Sci. NS-27:1651 (1980).Google Scholar
  19. 19.
    D. L. Griscom, J. Appl. Phys. 58:2524 (1985).Google Scholar
  20. 20.
    T. Takahashi, B. B. Triplett, K. Yokogawa and T. Sugano, Appl. Phys. Lett. 51:1334 (1987).Google Scholar
  21. 21.
    J. R. Schwank, D. M. Fleetwood, P. S. Winokur, P. V. Dressendorfer, D. C. Turpin and D. T. Sanders, IEEE Trans. Nucl. Sci. December (1987), to be published.Google Scholar
  22. 22.
    P. S. Winokur, E. B. Errett, D. M. Fleetwood, P. V. Dressendorfer and D. C. Turpin, IEEE Trans. Nucl. Sci. NS-32:3954 (1985).Google Scholar
  23. 23.
    J. R. Schwank, D. M. Fleetwood, P. S. Winokur, P. K. Hund and E. C. DasKalos, J. Radiation Effects; Research and Engineering 5, to be published.Google Scholar
  24. 24.
    A. G. Revesz, IEEE Trans. Nucl. Sci. 24:2102 (1977).Google Scholar
  25. 25.
    W. Kern and D. A. Puotinen, RCA Rev. 31: 187 (1970).Google Scholar
  26. 26.
    E. M. Terman, Solid State Electron. 5: 295 (1962).Google Scholar
  27. 27.
    R. Castagne and A. Vapaille, Surf. Sci. 28:557 (1971).Google Scholar
  28. 28.
    C. S. Jenq, Ph.D. dissertation, Princeton University (unpublished).Google Scholar
  29. 29.
    G. Hu and W. Johnson, Appl. Phys. Lett. 36:590 (1981).Google Scholar
  30. 30.
    W. K. Schubert and C. H. $eager, to be published, Materials Research Society Symposia Proceedings, Si02 and Its Interfaces (1988).Google Scholar

Copyright information

© Springer Science+Business Media New York 1988

Authors and Affiliations

  • W. K. Schubert
    • 1
  • C. H. Seager
    • 1
  1. 1.Sandia National LaboratoriesAlbuquerqueUSA

Personalised recommendations