Ion Implantation and Ionizing Radiation Effects in Thermal Oxides

  • Roderick A. B. Devine


Electron spin resonance data on oxygen vacancy defect (positive fixed oxide charge) creation in thin, thermal oxides produced by ion implantation is reviewed. It is found that energy dissipated by atomic displacement processes creates defects between 400 and 700 times more efficiently than that lost by ionizing processes. It is furthermore determined that the energy required in a displacement process to create an oxygen vacancy center is ~ 28 eV. Isochronal and isothermal annealing data combined with subsequent irradiation with ionizing radiation demonstrate that although oxygen vacancy centers dissappear for anneal temperatures above 400°C, they are not irreversibly removed unless temperatures ≧ 800°C are used.


Electron Spin Resonance Gate Oxide Peroxy Radical Isochronal Annealing Electron Spin Resonance Data 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K. Bruce Winterbon “Ion Implantation Range and Energy Deposition Distributions” (Plenum, New York 1975) Volumes 1 and 2Google Scholar
  2. 2.
    K. L. Yip and W. Beall Fowler, Phys. Rev. B11 2327 (1975)Google Scholar
  3. 3.
    D. L. Griscom, this volumeGoogle Scholar
  4. 4.
    E. H. Nicollian, C. N. Berglund, P. F. Schmidt and J. M. Andrews, J. Appl. Phys. 42 5654 (1971)CrossRefGoogle Scholar
  5. 5.
    F. J. Feigl, D. R. Young, D. J. DiMaria, S. Lai and J. Calise, J. Appl. Phys. 52 5665 (1981)CrossRefGoogle Scholar
  6. 6.
    J. H. Stathis and M. A. Kastner, Phys. Rev. B29 7079 (1983)Google Scholar
  7. 7.
    See for example: E. S. Yang, “Fundamentals of Semiconductor Devices” ( McGraw Hill, New York 1978 ) Chapter 8Google Scholar
  8. 8.
    E. P. O’Reilly and J. Robertson, Phys. Rev. B27 3780 (1983)Google Scholar
  9. 9.
    R. A. B. Devine and A. Golanski, J. Appl. Phys. 54 3833 (1983)CrossRefGoogle Scholar
  10. 10.
    R. A. B. Devine and A. Golanski, J. Appl. Phys. 55 2738 (1984)CrossRefGoogle Scholar
  11. 11.
    A. Golanski, R. A. B. Devine and J. C. Obelin, J. Appl. Phys. 56 1572 (1984)CrossRefGoogle Scholar
  12. 12.
    D. A. Thompson and R. S. Walker, Rad. Eff. 36 91 (1978)CrossRefGoogle Scholar
  13. 13.
    G. J. Dienes and G. H. Vineyard,Râdiation Effects in Solids“ ( Interscience, New York 1957 )Google Scholar
  14. 14.
    R. A. B. Devine and C. Fiori, J. Appl. Phys. 57 5162 (1985)CrossRefGoogle Scholar
  15. 15.
    R. Pfeffer, J. Appl. Phys. 57 5176 ( 1985CrossRefGoogle Scholar
  16. 16.
    R. A. B. Devine, Appl. Phys. Lett. 43 1056 (1983)Google Scholar
  17. 17.
    R. A. B. Devine, J. Appl. Phys. 56 983 (1984)Google Scholar
  18. 18.
    R. A. B. Devine, J. Non-Cryst. Solids (submitted)Google Scholar
  19. 19.
    A. H. Edwards and W. B. Fowler, Phys. Rev. B26 6649 (1982)Google Scholar
  20. 20.
    E. P. EerNisse and C. B. Norris, J. Appl. Phys. 45 5196 (1974)CrossRefGoogle Scholar
  21. 21.
    D. L. Griscom, Nucl. Inst. Meth. Phys. Res. 81 481 (1984)Google Scholar
  22. 22.
    R. A. B. Devine, Phys. Rev. B35 9783 (1987)CrossRefGoogle Scholar
  23. 23.
    D. L. Griscom in “Structure and Bonding in Non-Crystalline Solids” editors G. E. Walrafen and A. G. Revesz ( Plenum, New York 1986 ) p 369Google Scholar
  24. 24.
    R. A. B. Devine, Nucl. Inst. Meth. Phys. Res. 81 378 (1984)Google Scholar
  25. 25.
    J. E. Shelby and S. C. Keeton, J. Appl. Phys. 45 1458 (1974)CrossRefGoogle Scholar
  26. 26.
    R. A. B. Devine, J. Appl. Phys. 58 716 1985 )Google Scholar
  27. 27.
    R. A. B. Devine and C. Fiori, J. Appl. Phys. 58 3368 (1985)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1988

Authors and Affiliations

  • Roderick A. B. Devine
    • 1
  1. 1.Centre National d’Etudes des TélécommunicationsMeylanFrance

Personalised recommendations