Skip to main content

Hot Electron Transport in Silicon Dioxide

  • Chapter

Abstract

Hot electron transport in silicon dioxide is examined with emphasis on current experimental and theoretical 0 results. For oxide layers thicker than 100 Å, steady-state transport has been shown to control the carrier flow at all fields studied. The transition from a nearly thermal electron distribution at electric fields less than approximately 1.5 MV/cm to significantly hot distributions with average energies between 2 and 6 eV at higher fields of up to 16 MV/cm is discussed. The significance of non-polar phonon scattering in controlling the dispersive transport at higher electric fields, thereby preventing run-away and avalanche breakdown, is reviewed. For oxide thicknesses ≲ 100 Å, a transition from the steady-state to the ballistic transport regime occurs with the observation of quantum size effects and single phonon scattering events, as predicted theoretically. Also, both interface and bulk trap generation in SiO2 are shown to be caused by hot electrons with energies ≳ 2.2 eV.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T.N.Theis, D.J.DiMaria, J.R.Kirtley, and D.W.Dong, Phys. Rev. Lett. 52, 1445 (1984).

    Article  CAS  Google Scholar 

  2. D.J.DiMaria, T.N.Theis, J.R.Kirtley, F.L.Pesavento, D.W.Dong, and S.D.Brorson, J. Appl. Phys. 2, 1214 (1985).

    Google Scholar 

  3. D.J.DiMaria, M.V.Fischetti, M.Arienzo, and E.Tiemey, J. Appl. Phys. 60, 1719 (1986).

    CAS  Google Scholar 

  4. S.D.Brorson, D.J.DiMaria, M.V.Fischetti, F.L.Pesavento, P.M.Solomon, and D.W.Dong, J. Appl. Phys. 58 1302 (1985).

    CAS  Google Scholar 

  5. D.J.DiMaria, M.V.Fischetti, E.Tierney, S.D.Brorson, Phys. Rev. Lett. 56, 1284 (1986).

    Article  CAS  Google Scholar 

  6. D.J.DiMaria, M.V.Fischetti, J.Batey, L.Dori, E.Tierney, and J.Stasiak, Phys. Rev. Lett. 57, 3213 (1986).

    Article  CAS  Google Scholar 

  7. M.V.Fischetti, D.J.DiMaria, L.Dori, J.Batey, E.Tiemey, and J.Stasiak, Phys. Rev. B 35, 4404 (1987).

    Article  CAS  Google Scholar 

  8. M.V.Fischetti, Phys. Rev. Lett. 53, 1755 (1984).

    Article  CAS  Google Scholar 

  9. M.V.Fischetti, D.J.DiMaria, S.D.Brorson, T.N.Theis, and J.R.Kirtley, Phys. Rev. B 31, 8124 (1985).

    Article  CAS  Google Scholar 

  10. M.V.Fischetti and D.J.DiMaria, Phys. Rev. Lett. 55, 2455 (1985).

    Article  Google Scholar 

  11. W.Porod and D.K.Ferry, Phys. Rev. Lett. 54, 1189 (1985).

    Article  CAS  Google Scholar 

  12. W.Porod and D.K.Ferry, 4th Intl. Conf. Hot Electrons, Innsbruck, Austria, July 1985, unpublished.

    Google Scholar 

  13. D.J.DiMaria and J.R.Abemathey, J. Appl. Phys. 60, 1727 (1986).

    Google Scholar 

  14. H.R.Zeller, P.Pfluger, and J.Bemasconi, IEEE Trans. Elect. Insul. EI-19, 200 (1984).

    Google Scholar 

  15. P.Pfluger, H.R.Zeller, and J.Bemasconi, Phys. Rev. Lett. 53, 94 (1984).

    Article  CAS  Google Scholar 

  16. E.Cartier and P.Pfluger, Phys. Rev. B 34, 8822 (1986).

    Article  CAS  Google Scholar 

  17. E.Cartier and P.Pfluger, IEEE Trans. Electr. Insul. EI-22, 123 (1987).

    Google Scholar 

  18. E.Cartier, P.Pfluger, JJ.Pireaux, and M.Rei Vilar, Appl. Phys. A 44, 43 (1987).

    Google Scholar 

  19. E.Cartier and P.Pfluger, to be published in Physica Scripta.

    Google Scholar 

  20. H.H.Fitting and J.U.Frieman, Phys. Status Solidi A 69, 349 (1982).

    Article  CAS  Google Scholar 

  21. D.K.Ferry, Appl. Phys. Lett. 27, 689 (1975).

    CAS  Google Scholar 

  22. D.K.Ferry, J. Appl. Phys. 50, 1422 (1979).

    CAS  Google Scholar 

  23. D.K.Ferry, in The Physics of SiO 2 and Its Interfaces, edited by S.T.Pantelides ( Pergamon, New York, 1978 ), pp. 29–34.

    Google Scholar 

  24. T.H.DiStefano and M.Shatzkes, Appl. Phys. Lett. 25, 685 (1974).

    CAS  Google Scholar 

  25. T.H.DiStefano and M.Shatzkes, J. Vac. Sci. Technol. 13, 50 (1976).

    CAS  Google Scholar 

  26. P.Solomon and N.Klein, Solid State Commun. 17, 1397 (1975).

    Article  CAS  Google Scholar 

  27. P.Solomon, J. Vac. Sci. Technol. 14, 1122 (1977).

    CAS  Google Scholar 

  28. D.J.DiMaria and P.C.Arnett, IBM J. Res. Develop. 21, 227 (1977).

    Google Scholar 

  29. R.C.Hughes, Phys. Rev. B 15, 2012 (1977).

    Google Scholar 

  30. T.N.Theis, J.R.Kirtley, D.J.DiMaria, and D.W.Dong, Phys. Rev. Lett. 50, 750 (1983).

    Google Scholar 

  31. A.S.Ginovker, V.A.Gritsenko, and S.P.Sinitsa, Phys. Status Solidi A 26, 489 (1974).

    Article  CAS  Google Scholar 

  32. Z.A.Weinberg, W.C.Johnson, and M.A.Lampert, Appl. Phys. Lett. 25, 42 (1974).

    CAS  Google Scholar 

  33. P.M.Solomon, in The Physics of Si0 2 and Its Interfaces, edited by S.T.Pantelides ( Pergamon, New York, 1978 ), pp. 35–39.

    Google Scholar 

  34. R.C.Alig, S.Bloom, and C.W.Struck, Phys. Rev. B 22, 5565 (1980).

    Google Scholar 

  35. D.J.DiMaria and D.W.Dong, J. Appl. Phys. 51, 2722 (1980).

    CAS  Google Scholar 

  36. B.K.Ridley, J. Appl. Phys. 46, 998 (1975).

    CAS  Google Scholar 

  37. C.N.Berglund and R.J.Powell, J. Appl. Phys. 42, 573 (1971).

    Google Scholar 

  38. R.Poirier and J. Olivier, Appl. Phys. Lett. 21, 334 (1972).

    Google Scholar 

  39. P.M.Solomon and D.J.DiMaria, J. Appl. Phys. 52, 5867 (1981).

    CAS  Google Scholar 

  40. G.Lewicki and J.Maserjian, J. Appl. Phys. 46, 3032 (1975).

    CAS  Google Scholar 

  41. J.Maserjian and N.Zamani, J. Appl. Phys. 53, 559 (1982).

    CAS  Google Scholar 

  42. C.S.Jeng, T.R.Ranganath, C.H.Huang, H.S.Jones, and T.T.L.Chang, in Int. Elec. Dey. Meeting Technical Digest 1981 ( IEEE, New York, 1983 ), pp. 388–391.

    Google Scholar 

  43. M.-S. Liang and C.Hu, in Int. Elec. Dey. Meeting Technical Digest 1981 ( IEEE, New York, 1981 ), pp. 396–399.

    Google Scholar 

  44. A.Badihi, B.Eitan, I.Cohen, and J.Shappir, Appl. Phys. Lett. 40, 396 (1982).

    Google Scholar 

  45. M.-S. Liang, C.Chang, W.Yang, C.Hu, and R.W.Brodersen, in Int. Elec. Dey. Meeting Technical Digest 1983 ( IEEE, New York, 1983 ), pp. 186–189.

    Google Scholar 

  46. M.M.Heyns, R.F.DeKeersmaecker, and M.W.Hillen, Appl. Phys. Lett. 44, 202 (1984).

    Google Scholar 

  47. M.M.Heyns and R.F.DeKeersmaecker, J. Appl. Phys. 58, 3936 (1985).

    Google Scholar 

  48. M.-S.Liang, J.Y.Choi, P.K.Ko, and C.Hu, in Int. Elec. Dey. Meeting Technical Digest 1984 ( IEEE, New York. 1984 ). pp. 152–156.

    Google Scholar 

  49. Y.Nissan-Cohen. J.Shappir, and D.Frohman-Bentchkowsky, J. Appl. Phys. 60, 2024 (1986).

    Google Scholar 

  50. S.Horiguchi. T.Kobayashi. and K.Saito, J. Appl. Phys. 58, 387 (1985).

    CAS  Google Scholar 

  51. D.J.DiMaria. Appl. Phys. Lett. 51, 655 (1987).

    CAS  Google Scholar 

  52. D.J.DiMaria and J.Stasiak. unpublished.

    Google Scholar 

  53. R.Gale, F.J.Fcigl. C.W.Magee, and D.R.Young, J. Appl. Phys. 54, 6938 (1983).

    Google Scholar 

  54. A.F.J.Levi. J.R.Hayes. P.M.Platzman, and W.Wiegmann, Phys. Rev. Lett. 55, 2071 (1985).

    Google Scholar 

  55. M.Heiblum. M Nathan. D.C.Thomas, and C.M.Knoedler, Phys. Rev. Lett. 55, 2000 (1985).

    Google Scholar 

  56. M.Heiblum. I.M.Anderson, and C.M.Knoedler, Appl. Phys. Lett. 49, 207 (1986).

    Google Scholar 

  57. N.F.Mott and E.A.Davis. in Electronic Processes in Non-Crystalline Materials, 2nd edition ( Clarendon Press, Oxford, 1979 ), pp. 512–516.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer Science+Business Media New York

About this chapter

Cite this chapter

DiMaria, D.J., Fischetti, M.V. (1988). Hot Electron Transport in Silicon Dioxide. In: Helms, C.R., Deal, B.E. (eds) The Physics and Chemistry of SiO2 and the Si-SiO2 Interface. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0774-5_56

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0774-5_56

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-0776-9

  • Online ISBN: 978-1-4899-0774-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics