Historical Perspective on Tunneling in SiO2

  • J. Maserjian


This paper examines tunneling in SiO2 in light of work since 1974. It considers both its near-ideal behavior and departures from the ideal. The trapezoidal tunneling barrier is a good first order model provided it has not been degraded by excessive tunnel injection. However, the tunneling dispersion relation x(E) is not constant throughout the oxide film, but different near each interface. For a specific barrier region, good agreement is obtained using a two valley, two effective mass k(E) dependence. Quantum interference effects are clearly observed at the Si-SiO2 interface, but not at the metal-SiO2 interface.


Quantum Interference Effect Branch Energy Conduction Band Valley Oscillatory Factor WKBJ Approximation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A.H. Wilson, Proc. Roy. Soc. (London) 136A 487 (1932)Google Scholar
  2. 2.
    R. Holm, J. Appl. Phys„ 22, 569, (1951).Google Scholar
  3. 3.
    E.L. Murphy and R.H. Good, Jr., Phys. Rev. 102 1464 (1956).Google Scholar
  4. 4.
    I. Giaever, Ch. 3 in: Tunneling Phenomena in Solids, E. Bursten and S. Lundqvist, ed., ( Plenun Press, New York, 1969 ).Google Scholar
  5. 5.
    C.B. Duke, Tunneling in Solids, ( Academic Press, New York, 1969 ).Google Scholar
  6. 6.
    S.L. Kurtin, T.C. McGill, and C.A. Mead, Phys. Rev. B. Q, 3368 (1971).Google Scholar
  7. 7.
    E.H. Snow Solid-St. Comm. Q, 815 (1967).Google Scholar
  8. 8.
    M. Lenzlinger and E.H. Snow, J. Appl. PhY6. 4Q, 278 (1969).Google Scholar
  9. 9.
    W.E. Dahlke, Apo!. Phys. Lett. 1Q, 261 (1967).Google Scholar
  10. 10.
    H.C. Card and E.H. Rhoderick, Solid-St. Electron. 15, 993 (1972).Google Scholar
  11. 11.
    T.P. Ma and R.C. Barker, J. Appl. Phys„ 45 317 (1974).Google Scholar
  12. 12.
    R.A. Clarke and J. Shewchun, Solid-St. Electron. 14 957 (1971).Google Scholar
  13. 13.
    S. Kar, Appl. Phys. Lett 25, 587 (1974).Google Scholar
  14. 14.
    J. Maserjian and G. Petersson, Appl. Phys Lett 25, 50 (1974).Google Scholar
  15. 15.
    J. Maserjian, G. Petersson, and C. Svensson, Solid-St. Electron. 335 (1974).Google Scholar
  16. 16.
    J. Maserjian, J. Vac. Sci. Technol.] 1 996 (1974).Google Scholar
  17. 17.
    G. Petersson, C.M. Svensson, and J. Maserjian, Solid-St. Electron j, 449 (1975).Google Scholar
  18. 18.
    G. Lewicki and J. Maserjian,,l. Appl. Phys 45, 3032 (1975).Google Scholar
  19. 19.
    E.H. Nicollian and J.R. Brews, MOS Physics and Technology ( Wiley, New York, (1982).Google Scholar
  20. 20.
    D.J. Di Maria, K.M. De Meyer, C.M. Serrano, and D.W. Dong J. Awl. Phys. 52, 4 (1981).Google Scholar
  21. 21.
    J. Maserjian and N. Zamani, J. Appl. Phys. 5a, 559 (1982).Google Scholar
  22. 22.
    J. Maserjian and N. Zamani, J. Vac, Sci. Technol. 22, 743 (1982).Google Scholar
  23. 23.
    A. Badiki, B. Eitan, I. Cohen, and J. Shappir, Awl. Phys. Lett. 4Q, 396 (1982).Google Scholar
  24. 24.
    Y. Nisson-Cohen, J.Shappir, and D.Frohmon-Benthkowsky, Solid-St.Electron. 2Q, 717 (1985).CrossRefGoogle Scholar
  25. 25.
    J.M. Lung and S.A. Lyon, Awl. Phys. Lett. 5Q, 1152 (1987).Google Scholar
  26. 26.
    E.H. Nicollian, G.H.Berglund, P.F.Schrriidt, and J. M. Andrews,, J. Appl. Phys. 42, 5654 (1971).Google Scholar
  27. 27.
    M. Bakowski, R. Cockrum, N. Zamani, J. Maserjian, and C.R.Viswanathan, IEEE Trans. Nucl. arl, NS-25 1233 (1978).Google Scholar
  28. 28.
    S.K. Lai and D.K. Young, J. Aopl. Phys. 52, 6231 (1981).Google Scholar
  29. 29.
    M.V. Fischetti, R. Gastaldi, F. Maggioni, and A. Modelli, J. Aopl. Phys. 5a, 3136 (1982).Google Scholar
  30. 30.
    Z.A. Weinberg and A. Hartstein, Solid-St. Comm. 2Q, 179 (1976).Google Scholar
  31. 32.
    A. Hartstein and Z.A. Weinberg, Phys. Rev. B„ 2Q, 1335 (1979).Google Scholar
  32. 32.
    F.J. Grunthaner and J. Maserjian, in: Physics of SiO 2 and its Interfaces, S.T.Pantalidis, ed., ( Pergamon Press, New York, 1978 ); p. 60.Google Scholar
  33. 33.
    For a comprehensive review see: F. J. Grunthaner and P.J. Grunthaner Materials Science Reports 1, pp. 65–160 (1986).Google Scholar
  34. 34.
    M.H. Hecht, F.J. Grunthaner, and J. Maserjian, Mat. Res. Soc. Symp. Proc. 25, 317 (1984).Google Scholar
  35. 35.
    M.H. Hecht, R.P.Vasquez, F.J.Grunthaner, N.Zamani, and J.Maserjian,J. AQpI. Phys. 51, 5256 (1985).Google Scholar
  36. 36.
    Z.A. Weinberg and A. Hartstein, J. Appl. Phys. 54, 2517 (1983).Google Scholar
  37. 37.
    M. Av-Ron, M. Shatzkes, T.H. DiStefano, and R.A. Gdula, J. Appl. Phys. 52 2897 (1981).Google Scholar
  38. 38.
    Z.A. Weinberg, J. Appt. Phys. 53,, 5052 (1982).Google Scholar
  39. 39.
    M.L. Cohen and T.K. Bergstresser, Rtlys. Rev. JAI 789 (1966).Google Scholar
  40. 40.
    W. Franz, in: Handbuch der Physik, S. Flugge, ed., ( Springetr, Berlin, 1956 ); p. 155.Google Scholar
  41. 41.
    W.B. Fowler, in; Physics of SiO 2 and its interfaces, S.T.Pantalidis, ed., ( Pergamon Press, New York, 1978 )Google Scholar
  42. 42.
    E.O. Kane and E.I. Blount, Ch.6 in Tunneling Phenomena in Solids, E. Burstein and S. Lundqvist,ed., ( Plenum Press, New York, 1969 ).Google Scholar
  43. 43.
    VZ. Zekeriya and T.P. Ma, IEEE Trans. Nucl. Sci., NS-31 1261 (1984); Appt. Ptlys. Lett. 47, 54 (1985).Google Scholar

Copyright information

© Springer Science+Business Media New York 1988

Authors and Affiliations

  • J. Maserjian
    • 1
  1. 1.Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaUSA

Personalised recommendations