Interstitial Fluxes During Silicon Oxidation

  • Scott T. Dunham

Abstract

In extending IC fabrication models from 1D to 2D, it is essential to understand the behavior of point defects. Recent experimental work on enhanced diffusion during the thermal oxidation of silicon demonstrates that altering generation/recombination processes in the silicon substrate does not affect interstitial supersaturation during oxidation. In contrast, experimental observations of enhanced diffusion during the thermal nitridation of SiO2, which results in the growth of a thin interface oxide, indicate that changes within the oxide have a strong influence on interstitial kinetics. These observations suggest that diffusion into the oxide, rather than diffusion into the silicon or surface regrowth, is the dominant sink for interstitials generated by the oxidizing interface. Further, the sublinear dependence of OED and OISF growth on oxidation rate is shown to be a direct result of assuming a steady-state balance between interstitial generation at the interface and diffusion into the oxide. The model also explains the retarded diffusion of phosphorus observed for very long oxidation times.

Keywords

Oxidation Rate Silicon Membrane Interstitial Concentration Silicon Lattice Bare Silicon 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    A. M. Lin, D. A. Antoniadis and R. W. Dutton, J. Electrochem. Soc. 128, 1131 (1981).CrossRefGoogle Scholar
  2. [2]
    K. Taniguchi, K. Kurosawa and M. Kashiwagi, J. Electrochem. Soc. 127, 2243 (1980).CrossRefGoogle Scholar
  3. [3]
    D. A. Antoniadis and I. Moskowitz, J. Appl. Phys. 53, 6786 (1982).Google Scholar
  4. [4]
    Y. Ishikawa, Y. Sakina, H. Tanaka, S. Matsumoto and T. Numi, J. Electrochem. Soc. 129, 644 (1982).CrossRefGoogle Scholar
  5. [5]
    D. A. Antoniadis, A. G. Gonzales and R. W. Dutton, J. Electrochem. Soc. 125, 813 (1978).CrossRefGoogle Scholar
  6. [6]
    D. A. Antoniadis, A. M. Lin and R. W. Dutton, Appl. Phys. Let. 33, 1030 (1978).CrossRefGoogle Scholar
  7. [7]
    S. P. Murarka, Physical Review B 16, 2849 (1977).CrossRefGoogle Scholar
  8. [8]
    S. M. Hu, Appl. Phys. Let. 27, 165 (1975).CrossRefGoogle Scholar
  9. [9]
    H. Shirarki, Jap. J. Appl. Phys. 15, 1 (1976).CrossRefGoogle Scholar
  10. [10]
    R. B. Fair, J. Appl. Phys. 51, 5828 (1980).CrossRefGoogle Scholar
  11. [11]
    T. Y. Tan, U. Gösele and F. F. Morehead, Appl. Phys. 31, 97 (1983).Google Scholar
  12. [12]
    D. A. Antoniadis, J. Electrochem. Soc. 129, 1093 (1982).CrossRefGoogle Scholar
  13. [13]
    S. M. Hu, J. Appl. Phys. 45, 1567 (1974).CrossRefGoogle Scholar
  14. [14]
    S. M. Hu, Appl. Phys. Let. 43, 449 (1983).CrossRefGoogle Scholar
  15. [15]
    A. M. Lin, R. W. Dutton, D. A. Antoniadis and W. A. Tiller, J. Electrochem. Soc. 128, 1121 (1981).CrossRefGoogle Scholar
  16. [16]
    S. T. Dunham and J. D. Plummer, J. Appl. Phys. 57, 2541 (1986).CrossRefGoogle Scholar
  17. [17]
    R. Francis and P. S. Dobson, J. Appl. Phys. 50, 280 (1979).CrossRefGoogle Scholar
  18. [18]
    W. A. Tiller, J. Electrochem. Soc. 127, 619 (1980).CrossRefGoogle Scholar
  19. [19]
    W. A. Tiller, J. Electrochem. Soc. 127, 625 (1980).CrossRefGoogle Scholar
  20. [20]
    W. A. Tiller, J. Electrochem. Soc. 128, 689 (1981).CrossRefGoogle Scholar
  21. [21]
    T. Y. Tan and U. Gösele, Appl. Phys. Let. 39, 86 (1981).CrossRefGoogle Scholar
  22. [22]
    S. T. Dunham, to appear in J. Electrochem Soc. Google Scholar
  23. [23]
    S. T. Ahn J. D. Shott and W. A. Tiller, Proceedings of the Electrochemical Society Meeting, San Diego, CA, October 1986.Google Scholar
  24. [24]
    P. B. Griffin and J. D. Plummer, Proceedings of the Electrochemical Society Meeting, San Diego, CA, October 1986.Google Scholar
  25. [25]
    P. Fahey, R. W. Dutton and M. Moslehi, Appt. Phys. Let. 43, 683 (1983).CrossRefGoogle Scholar
  26. [26]
    S. Mizuo, T. Kusaka, A. Shintani, M. Nanba and H. Higuchi, J. Appl. Phys. 54, 3860 (1983).CrossRefGoogle Scholar
  27. [27]
    P. Fahey, G. Barbuscia, M. Moslehi and R. W. Dutton, Appl. Phys. Let. 46, 784 (1985).CrossRefGoogle Scholar
  28. [28]
    S. Mizuo and H. Higuchi, J. Electrochem. Soc. 129, 2292 (1982).CrossRefGoogle Scholar
  29. [29]
    C. J. Han, M. M. Moslehi, C. R. Helms and K. C. Saraswat, Appl. Phys. Let. 46, 641 (1985).CrossRefGoogle Scholar
  30. [30]
    R. P. Vasquez, A. Madhukar, F. J. Grunthaner and M. L. Naiman, Appl. Phys. Let. 44, 969 (1984).CrossRefGoogle Scholar
  31. [31]
    S. T. Dunham, J. Appl. Phys. 62, 1195 (1987).CrossRefGoogle Scholar
  32. [32]
    R. Tromp, G. W. Rubloff, P. Balk, F. K. LeGoues and E. J. van Loenen, Phys. Rev. Lett. 55, 2332 (1985).CrossRefGoogle Scholar
  33. [33]
    D. A. Antoniadis, J. Electrochem. Soc. 129, 1093 (1982).CrossRefGoogle Scholar
  34. [34]
    T. Y. Tan and U. Gösele, Appl. Phys. Let. 40, 616 (1982).CrossRefGoogle Scholar
  35. [35]
    S. T. Dunham and J. D. Plummer, J. Appl. Phys. 57, 2551 (1986).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1988

Authors and Affiliations

  • Scott T. Dunham
    • 1
  1. 1.Electrical, Computer and Systems Engineering DepartmentBoston UniversityBostonUSA

Personalised recommendations