Advertisement

Oxidation-Induced Defects and Effects in Silicon During Low Thermal-Budget Processing

  • Richard B. Fair

Abstract

Low thermal-budget processing of Si can produce point-defect concentrations that depend on time, temperature and ambient in ways that are unlike observations from high temperature/long time anneals. Following ion implantation, anneals in oxidizing ambients may produce point-defect supersaturations that are not significant compared to levels produced by dissolving point-defect clusters or extended dislocations. A reverse oxidation-enhanced diffusion (OED) effect is observed for 750°C anneals of B an As-implanted Si. Other sources of point-defects in low thermal-budget processes include dissolving precipitates and metal silicide reactions which can assist in eliminating process-induced defects.

Keywords

Point Defect Fault Shrinkage Rapid Thermal Oxidation Mask Edge Shallow Junction Formation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. M. Osbum and A. Reisman, J. of Supercomputing. L 149 (1987).Google Scholar
  2. 2.
    S. M. Hu, J. Appl. Phys., 57 4527 (1985).CrossRefGoogle Scholar
  3. 3.
    K. Taniguchi, K. Kurosawa, and M. Kashiwagi, J. Electrochem. Soc., 127 2243 (1980).Google Scholar
  4. 4.
    A. M. Lin, R. W. Dutton, D. A. Antoniadis, and W. A. Tiller, J. Electrochem. Soc., 128 1121 (1981).Google Scholar
  5. 5.
    W. B. Rogers, unpublishedGoogle Scholar
  6. 6.
    K. Nishi and D. A. Antoniadis, Appl. Phys. Lett., 46 516 (1985).Google Scholar
  7. 7.
    Y. Kim, R. B. Fair, H. Z. Massoud, unpublished.Google Scholar
  8. 8.
    M. Servidori, R. Angelucci, F. Cembali and S. Solmi, J. Appl. Phys., §1., 1834 (1987).Google Scholar
  9. 9.
    R. B. Fair, J. Electrochem. Soc., 128,1360 (1981).Google Scholar
  10. 10.
    A. C. Ajmera and G. A. Rozgonyi, Meeting of the Electrochemical Soc., Boston, Abs. #239, Spring 1986.Google Scholar
  11. 11.
    A. C. Ajmera and G. A. Rozgonyi, Appl. Phys. Lett., 42,1269 (1986).Google Scholar
  12. 12.
    K. S. Jones, S. Prussin and E. R. Weber, J. Appl. Phys., 62 4114 (1987).Google Scholar
  13. 13.
    S. M. Hu, J. Appl. Phys., 51, 3666 (1980).CrossRefGoogle Scholar
  14. 14.
    J. C. C. Tsai, D. G. Schimmel, R. B. Fair, and W. Maszara, J. Electrochem. Soc., 134 1508 (1987).Google Scholar
  15. 15.
    K. Nishi and D. A. Antoniadis, J. Appl. Phys., 52,1117 (1986).Google Scholar
  16. 16.
    J. Narayan and K. Jagannadham, J. Appl. Phys., 62 1694 (1987).Google Scholar
  17. 17.
    D. S. Wen, P. L. Smith, C. M. Osbum and G. A. Rozgonyi, Appl. Phys. Lett., 51 1182 (1987).Google Scholar
  18. 18.
    S. M. Hu, Appl. Phys. Lett., IL 308 (1987).Google Scholar
  19. 19.
    T. E. Seidel, D. J. Lischner, C. S. Pai, R. V. Knoell, D. M. Maher, and D. C. Jacobson, Nucl. Instrum. Methods Phys. Res. B.,1$ 251 (1985).Google Scholar
  20. 20.
    J. C. C. Tsai, D. G. Schimmel, R. E. Ahrens and R. B. Fair, J. Electrochem. Soc., 134 2348 (1987).Google Scholar
  21. 21.
    P. Fahey and R. W. Dutton, unpublished.Google Scholar
  22. 22.
    P. Fahey, G. Barbuscia, M. M. Moslehi and R. W. Dutton, Appl. Phys. Lett., 784 (1985).Google Scholar
  23. 23.
    D. S. Wen, P. Smith, C. M. Osbum and G. A. Rozgonyi, unpublished.Google Scholar
  24. 24.
    C. Osbum, H. Berger, R. Donovan and G. Jones, unpublished.Google Scholar

Copyright information

© Springer Science+Business Media New York 1988

Authors and Affiliations

  • Richard B. Fair
    • 1
    • 2
  1. 1.Microelectronics Center of North CarolinaResearch Triangle ParkUSA
  2. 2.Department of Electrical EngineeringDuke UniversityDurhamUSA

Personalised recommendations