Advertisement

Uncertainty Analysis of Analytic Oxidation Models

  • Zhi-Min Ling
  • Luc H. Dupas
  • Kristin M. De Meyer

Abstract

The purpose of this paper is to indicate the parameters uncertainty in most of the proposed analytical oxidation models [1]–[6]. At first, the ε -indifference range, i.e. is defined. Then the determination of the parameters uncertainty is converted into the determination of ε -indifference range. The methods are introduced to determine this ε -indifference range, and afterwards also the parameter uncertainty. The correlation matrices of the paramet ers for each model are given in this paper. The results of this paper show that most of the analytical oxidation model’s parameters are interdependent within a widely used data fitting and parameter extraction range. Most of the extracted parameters for these proposed oxidation models [1]–[6] show a quite large uncertainty. Therefore, some physical mechanisms of oxidation which were concluded from or proven by the data fitting only could be questioned and debated.

Keywords

Parameter Uncertainty Oxide Thickness Internal Electric Field Oxidation Model Ellipsoid Approximation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B.E.Deal and A.S.Grove, J.Appl.Phys. 3¢, 3770(1965).Google Scholar
  2. 2.
    A.Fargeix and G.Ghibaudo, J.Appl.Phys., 54(12) 7153(1983).Google Scholar
  3. 3.
    H.Z.Massoud, J.D.Plummer and E.A.Irene J.Electrochem. Soc. 132 1745(1985).Google Scholar
  4. 4.
    Y.Z.Lu and Y.C.Cheng, J.Appl.Phys., 56(6) 1608(1986).Google Scholar
  5. 5.
    A.G.Revesz, B.J.Mrstik, H.L.Hugher, and D.McCarthy, J.Electrochem. Soc. 133, 586(1986).Google Scholar
  6. 6.
    C.J.Han and C.R.Helms, J.Electrochem. Soc. 134, 1297(1987).Google Scholar
  7. 7.
    Z.M.Ling, L.Dupas and K.DeMeyer, this conference Google Scholar
  8. 8.
    Y.Bard, “Nonlinear Parameter Estimation”, New York and London, 1974.Google Scholar
  9. 9.
    H.Z.Massoud and J.D.Plummer, J.Appl.Phys., 62(8) 3416(1987).Google Scholar
  10. 10.
    W.Maes, K.M.DeMeyer and L.H.Dupas, IEEE Trans. on CAD, CAD-5(2) 320,(1986).Google Scholar
  11. 11.
    E.A.Irene and Y.J.vanderMeulen, J.Electrochem.Soc. 123 1380(1976).Google Scholar
  12. 12.
    B.J.Mrstik, A.G.Revesz, M.Ancona and H.L.Hughes, J.Electrochem.Soc. 134, 2020 (1987).Google Scholar
  13. 13.
    M.A.Hopper, R.A.Clarke, and L.Young, ibid, 122, 1216 (1975).Google Scholar

Copyright information

© Springer Science+Business Media New York 1988

Authors and Affiliations

  • Zhi-Min Ling
    • 1
  • Luc H. Dupas
    • 1
  • Kristin M. De Meyer
    • 1
    • 2
  1. 1.IMEC v.z.w.Leuven, HeverleeBelgium
  2. 2.Katholieke universiteitLeuvenBelgium

Personalised recommendations