Dielectric Breakdown of SiO2 Grown on Rough Si Surfaces

  • J. P. Gambino
  • T. N. Nguyen
  • B. Cunningham
  • J. F. Shepard


SiO2 grown on CC12F2 reactive ion etched Si has very low breakdown fields, due to reactive ion etching (RIE)-induced surface roughness. Oxidation of the rough Si surface results in a rough Si-SiO2 interface and a rough SiO2 surface. The low breakdown fields are due to field enhancement from bumps at the injecting electrode. The sharpness of the bumps, and hence the field enhancement, is greatest at the Si-SiO2 interface. The interface state density, the minority carrier generation lifetime, and the oxide flatband voltage, mobile charge, and hole trapping, are comparable for metal-oxide-semiconductor (MOS) capacitors fabricated on CC12F2-etched Si and on control Si (no RIE).


Breakdown Voltage Field Enhancement Mobile Charge Interface State Density Control Oxide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D.J. DiMaria and D.R. Kerr, Appl. Phys. Lett., 27, 505 (1975).CrossRefGoogle Scholar
  2. 2.
    M. Olcer, H.J. Buhlmann, and M. Ilegens, J. Electrochem. Soc., 133, 621 (1986).CrossRefGoogle Scholar
  3. 3.
    Y. Fong, A.T. Wu, R. Moazzami, P.R. Ko, and C. Hu, Recent News Paper No. 26. 8, IEEE Int. Electron Dev. Meet., Wash., D.C., December 1987.Google Scholar
  4. 4.
    L.M. Ephrath and R.S. Bennett, J. Electrochem. Soc., 129, 1822 (1982).CrossRefGoogle Scholar
  5. 5.
    G.C. Schwartz and P.M. Schaible, J. Vac. Sci. Tech., 16, 410 (1979).CrossRefGoogle Scholar
  6. 6.
    C. Koburger, F.R. White, L. Nesbit, and S.D. Emmanuel, IEEE Trans. Elec. Dev., ED-33, 766 (1986).Google Scholar
  7. 7.
    T. Hosoya, Y. Ozaki, and K. Hirata, J. Electrochem. Soc., 132, 2436 (1985).CrossRefGoogle Scholar
  8. 8.
    T.N. Nguyen, Recent News Paper No. 701, Electrochemical Society Spring Meeting, Boston, Mass., May 1986.Google Scholar
  9. 9.
    D.R. Young, E.A. Irene, D.J. DiNaria, R.F. DeKeersmaecker, and H.Z. Massoud, J. Appl. Phys., 50, 6366 (1979).CrossRefGoogle Scholar
  10. 10.
    E.H. Nicollian and J.R. Brews, “MOS Physics and Technology”, John Wiley and Sons, N.Y. (1982).Google Scholar
  11. 11.
    D.R. Kerr, unpublished.Google Scholar
  12. 12.
    B. Gorowitz and R.J. Saia, in “Plasma Processing for VLSI”, p. 297, N.G. Einspruch and D.M. Brown, ed., Academic Press, Inc., N.Y. (1984).Google Scholar
  13. 13.
    A.H. Carim and R. Sinclair, J. Electrochem. Soc., 134, 741 (1987).CrossRefGoogle Scholar
  14. 14.
    S.W. Pang, D.D. Rathman, D.J.Silversmith, R.W. Mountain, and P.D. DeGraff, J. Appl. Phys., 54, 3272 (1983).Google Scholar
  15. 15.
    T.J. Lewis, J. Appl. Phys., 26, 1405 (1955).CrossRefGoogle Scholar
  16. 16.
    D.J. DiMaria, in “The Physics of Si02 and its Interfaces”, p. 160, S.T. Pantelidas, ed., Pergamon Press, N.Y. (1978).Google Scholar

Copyright information

© Springer Science+Business Media New York 1988

Authors and Affiliations

  • J. P. Gambino
    • 1
  • T. N. Nguyen
    • 2
  • B. Cunningham
    • 1
  • J. F. Shepard
    • 1
  1. 1.IBM East FishkillHopewell Jct.USA
  2. 2.IBM Research DivisionT.J. Watson Research CenterYorktown Hts.USA

Personalised recommendations