The Role of SiO in Si Oxidation at a Si-SiO2 Interface

  • S. I. Raider


Deal and Grove (1) modeled thin oxide growth by a Si-SiO2 interfacial reaction whose rate is expected to vary linearly with time and exhibit a first order dependence on oxidant pressure. Deviations from this model, which increase with a decrease in temperature, are observed during oxidation in dry O2 for oxides ≤ 30 nm thick. To account for the unexplained thin oxide growth process, it was proposed (2) that molecular SiO is formed in parallel with SiO2. SiO formation and transport from the Si-SiO2 interface into SiO2 are identified as as a parallel oxidation process that originate at the interface and that affect Si02 growth. Experimental studies supporting this previously proposed model show a) evidence of significant SiO transport for oxide films that are ≲ 30 nm thick and b) that oxidation to SiO2 is inhibited by blocking the intermediate step in which SiO forms.


Oxide Film Oxide Thickness Oxide Growth Si02 Film Thickness Dependence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B.E. Deal and A.S. Grove:, J. Appl. Phys. 16, 3770 (1965).CrossRefGoogle Scholar
  2. 2.
    S.I. Raider:, Bull. Amer. Phys.> Soc., 32 Electrochem. Soc. Ext. Abstr., 87–1, Abstr. 243; to be published.Google Scholar
  3. 3.
    J.R Ligenza:, J. Phys. Chem., 10, 2011 (1961).Google Scholar
  4. 4.
    Y.J. Meulen:, J. Electrochem. Soc., 112, 530 (1972).CrossRefGoogle Scholar
  5. 5.
    A. Reisman, EH. Nicollian, C.K. Williams and C.J. Merz:, J. Electr. Matis. 16, 45 (1987).CrossRefGoogle Scholar
  6. 6.
    D.W. Hess and B.E Deal:, J. Electrochem. Soc.,., 579 (1975).Google Scholar
  7. 7.
    E. Rosencher, A. Straboni, S. Rigo, and G. Amsel:, Appi. Phys. Lett., M4, 254 (1979).Google Scholar
  8. 8.
    F. Rochet, B. Agius, and S. Rigo:, J. Electrochem. Soc., 131, 1914 (1984).CrossRefGoogle Scholar
  9. 9.
    S.I. Raider and LE. Forget:, J. Electrochem. Soc., 27. 1783 (1980).CrossRefGoogle Scholar
  10. 10.
    Y. Kamigaki and Y. Ltoh:, J. Appi. Phys., 48, 2891 (1977).CrossRefGoogle Scholar
  11. 11.
    H.Z. Masscud, J. Plummer, and E.A. Irene:, J. Electrochem. Soc., 121, 1745, (1985).CrossRefGoogle Scholar
  12. 12.
    R. Ghez and Y.J van der Meulen:, J. Electrochem. Soc., 112, 1100 (1972).CrossRefGoogle Scholar
  13. 13.
    J. Blanc:, Appl. Phys. Leu., 33, 424 (1978).CrossRefGoogle Scholar
  14. 14.
    M.A. Hopper, R.A. Clarke and L Young:, J. Electrochem. Soc., 122, 1216 (1975).CrossRefGoogle Scholar
  15. 15.
    EA. Irene, E. Tierney, and J. Angillelo:, J. Electrochem. Soc., 129, 1253 (1986).CrossRefGoogle Scholar
  16. 16.
    C.-J. Han and C.R. Helms:, J. Electrochem. Soc., 134, 1297 (1987).CrossRefGoogle Scholar
  17. 17.
    S.I. Raider and R. Futsch:, J. Electrochem. Soc., 123, 174 (1976)CrossRefGoogle Scholar
  18. 18.
    J.M. Gibson and D.W. Dong:, J. Electrochem. Soc., 127, 2722 (1980).CrossRefGoogle Scholar
  19. 19.
    A.G. Revesz, B.I. Mrstic, H.L Hughes and D. McCarthy:, J. Electrochem.Soc., in, 586 (1986).Google Scholar
  20. 20.
    Si Raider, to be published.Google Scholar
  21. 21.
    E.P. EerNisse:, Appl. Phys. Lett., 35, 8 (1978).Google Scholar
  22. 22.
    M. Liehr, G.B. Bronner, and J.E Lewis:, Appl. Phys. Len., to be published.Google Scholar
  23. 23.
    M. Liehr, LE. Lewis, and G.W. Rubloff:, J. Vac. Soc. Technol., 1986.Google Scholar
  24. 24.
    R.M. Bradley:, J. Appl. Phys., 61, 545 (1987).CrossRefGoogle Scholar
  25. 25.
    F. Montillo and P. Balk:, J. Electrochem. Soc., 118, 1463 (1971).CrossRefGoogle Scholar
  26. 26.
    K. Hofmann, D.R. Young, and G.W. Rubloff:, to be published.Google Scholar
  27. 27.
    R.E. Walkup and S.I. Raider:, J. Appl. Phys., to be published.Google Scholar
  28. 28.
    S.I. Raider and R.E. Walkup, Materials Research Society, S. Pantelides and G. Lucovsky:, Eds. Proc. Vol., Boston, MA, 11–87.Google Scholar
  29. 29.
    R. E. Walkup, Ph. Avouris, R. W. Dreyfus, J. M. Jasinski, and G. S. Selwyn:, Appl. Phys. Lett., 45, 372 (1984).Google Scholar
  30. 30.
    S.-S. Lin:, J. Amer. Cer. Soc. 58, 271 (1975).CrossRefGoogle Scholar
  31. 31.
    S.I. Raider, R.A. Gdula, and J.R. Petrak:, Appl. Phys. Lett., 27, 150 (1975).Google Scholar
  32. 32.
    W.J.M.J. Josquin and Y. Tamminga:, J. Electrochem. Soc., 129, 1803 (1982).Google Scholar
  33. 33.
    K. Schott, K.C. Hofmann, and M. Schulz:, Appl. Phys. A45, 73 (1988).CrossRefGoogle Scholar
  34. 34.
    J.K. Howard, R. Futsch, and S.I. Raider:, J. Vac. Sci. Technol., 14, 69 (1977).CrossRefGoogle Scholar
  35. 35.
    S.I. Raider, R. Futsch, J.A. Aboaf, and W.A. Pliskin:, J. Electrochem. Soc., 123, 560 (1976).CrossRefGoogle Scholar
  36. 36.
    T. Ito, S. Hijiya, T.Nozaki, H. Arakawa, M. Shinoda, and Y. Fukukawa:, J. Electrochem. Soc., 125, 448 (1978).CrossRefGoogle Scholar
  37. 37.
    R.G. Frieser:. Electrochem. Soc., 115, 1092 (1968).CrossRefGoogle Scholar
  38. 38.
    R.M. Barrer.: J. Chem. Soc. 136, 378 (1934).CrossRefGoogle Scholar
  39. 39.
    J. Johnson and R. Burt:. J. Opt. Soc. Am., 6, 734 (1922).CrossRefGoogle Scholar
  40. 40.
    E.A. Gulbransen, K.F. Andrew and F.A. Brassart:, J.Electrochem. Soc., 113, 834 (1966).Google Scholar

Copyright information

© Springer Science+Business Media New York 1988

Authors and Affiliations

  • S. I. Raider
    • 1
  1. 1.IBM T.J. Watson Research CenterYorktown HeightsUSA

Personalised recommendations