Chemical Kinetics of Hydrogen and Pb Centers

  • K. L. Brower


Electron paramagnetic resonance (EPR) measurements indicate that Pb centers, which are a dangling-bond type of defect at the (111) Si-Si02 interface, can be passivated with H2 at a rate which is proportional to the H2 concentration in the thermal oxide and the interfacial density of Pb centers. This process is characterized by an activation energy, Ef, of 1.66 ± 0.06 eV with a second-order pre-exponential factor, k(2)of, of 1.94 (+2./-1.) x 10−6 cm3/sec for temperatures between 230 and 260°C. The passivation process is demonstrated to be consistent with a chemical process in which H2 molecules, during the course of their diffusional motion among the accessible interstices of the Si02 network and the reaction site at Pb centers, react directly with Pb centers. EPR measurements indicate that passivated Pb centers, denoted as HPb, in effect dissociate in vacuum above 550°C.


Electron Paramagnetic Resonance Thermal Oxide Passivation Process Interfacial Density Vitreous Silica 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. H. Poindexter, E. R. Ahlstrom, and P. J. Caplan, in The Physics of Si02 and its Interfaces, edited by S. T. Pantilides ( Pergamon Press, New York, 1978 ), p. 227.Google Scholar
  2. 2.
    P. J. Caplan, E. H. Poindexter, B. E. Deal, and R. R. Razouk, J. Appl. Phys. 50, 5847 (1979).CrossRefGoogle Scholar
  3. 3.
    K. L. Brower, Appl. Phys. Lett. 4, 1111 (1983); Zeitschrift für Physikalische Chemie Neue Folge 151, 177 (1987); in Materials Science Form. Defects in Semiconductors I, edited by H. J. Bardeleben ( Trans Tech Publications Ltd., Switzerland, 1986 ), p. 181.Google Scholar
  4. 4.
    E. H. Poindexter, Zeitschrift für Physikalische Chemie Neue Folge 151, 165 (1987).CrossRefGoogle Scholar
  5. 5.
    W. E. Carlos, Appl. Phys. Lett. 50, 1450 (1987).CrossRefGoogle Scholar
  6. 6.
    A. Redondo, W. A. Goddard III, T. C. McGill, and G. T. Surratt, Solid State Communications 20, 733 (1976).CrossRefGoogle Scholar
  7. 7.
    M. Cook and C. T. White, Phys. Rev. Lett. 59, 1741 (1987).CrossRefGoogle Scholar
  8. 8.
    A. H. Edwards, Phys. Rev. B 36, 9638 (1987).CrossRefGoogle Scholar
  9. 9.
    Y. Nishi, Japan. J. Appl. Phys. 10, 52 (1971).CrossRefGoogle Scholar
  10. 10.
    S. J. Pearton, J. W, Corbett, and T. S. Shi, Appl. Phys A 43, 153 (1987).CrossRefGoogle Scholar
  11. 11.
    N. M. Johnson, D. K. Biegelsen, and M. D. Moyer, J. Vac. Sci. Technol. 19, 390 (1981).CrossRefGoogle Scholar
  12. 12.
    K. L. Brower, submitted for publication.Google Scholar
  13. 13.
    J. F. Shackelford and J. S. Masaryk, J. Non-crystalline Solids 21, 55 (1976).CrossRefGoogle Scholar
  14. 14.
    J. E. Shelby, J. Appl. Phys. 48, 3387 (1977).CrossRefGoogle Scholar
  15. 15.
    J. F. Shackelford, P. L. Studt, and R. M. Fulrath, J. Appl. Phys. 43, 1619 (1972).CrossRefGoogle Scholar
  16. 16.
    A. Van Wieringen and N. Warmoltz, Physica 22, 849 (1956).CrossRefGoogle Scholar
  17. 17.
    K. L. Brower, P. M. Lenahan, and P. V. Dressendorfer, Appl. Phys. Lett. 41, 251 (1982).CrossRefGoogle Scholar
  18. 18.
    J. Vitko, C. M. Hartwig, and P. L. Mattern, in The Physics of Si02 and its Interfaces, edited by S. T. Pantelides ( Pergamon Press, New York, 1978 ), p. 215.Google Scholar

Copyright information

© Springer Science+Business Media New York 1988

Authors and Affiliations

  • K. L. Brower
    • 1
  1. 1.Sandia National LaboratoriesAlbuquerqueUSA

Personalised recommendations