Silicon Oxidation Models Based on Parallel Mechanisms

  • C. R. Helms
  • J. de Larios


It has been suggested by numerous workers over the years that multiple mechanisms acting in parallel might be responsible for the growth of thermal oxides on silicon. The most obvious example of such an effect is oxidation in “wet” O2 where both H2O and O2 act in parallel to oxidize the silicon. In this paper these models will be reviewed in light of more recent data, and suggest a new model based on a combination of these mechanisms.


Pressure Dependence Parallel Mechanism Interface Model Thin Oxide Thick Oxide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B. E. Deal and A. S. Grove, J. Appl. Phys., 36, 3770 (1965).CrossRefGoogle Scholar
  2. 2.
    P. J. Jorgensen, J. Chem. Phys., 37, 874 (1962).CrossRefGoogle Scholar
  3. 3.
    D. O. Rayleigh, J. Electrochem. Soc., 113, 782 (1966).CrossRefGoogle Scholar
  4. 4.
    R. Ghez and Y. J. van der Meulen, J. Electrochem. Soc., 119, 1100 (1972).Google Scholar
  5. 5.
    J. Blanc, Appl. Phys. Lett., 33, 424 (1978).Google Scholar
  6. 6.
    M. A. Hopper, R.A. Clarke, L. Young, J. Electrochem. Soc., 122, 1216 (1975).CrossRefGoogle Scholar
  7. 7.
    E. A. Irene, Appl. Phys. Lett., 40, 74 (1982).Google Scholar
  8. 8.
    E. A. Irene, J. Electrochem. Soc., 125, 1708 (1978).CrossRefGoogle Scholar
  9. 9.
    A. G. Revesz, B. J. Mrstik, H. L. Huges, H. L. McCarthy, J. Electrochem Soc., 133, 586 (1986).CrossRefGoogle Scholar
  10. 10.
    C. J. Han, C. R. Helms, J. Electrochem. Soc., 134, 1299 (1987).Google Scholar
  11. 11.
    E. H. Nicollian, A. Reisman, J. Elect. Mat., to be published.Google Scholar
  12. 12.
    R. H. Doremus, this volume.Google Scholar
  13. 13.
    D. W. Hess, B. E. Deal, J. Electrochem Soc., 124, 735 (1977).CrossRefGoogle Scholar
  14. 14.
    H. Z. Massoud, J. D. Plummer, and E. A. Irene, J. Electrochem. Soc., 132, 2693 (1985).CrossRefGoogle Scholar
  15. 15.
    L. N. Lie, R. R. Razouk, and B. E. Deal, J. Electrochem. Soc., 129, 2828 (1982).CrossRefGoogle Scholar
  16. 16.
    R. H. Doremus, as quoted by J. Blanc, this volume.Google Scholar
  17. 17.
    C. J. Han, C. R. Helms, in “Silicon Nitride and Silicon Dioxide Thin Insulating Films,” Electrochem. Soc. Proc, 87–10, 315 (1987).Google Scholar
  18. 18.
    The form involving 13 which is mathematically identical to the other form has been suggested by Demirlioglu and Plummer (to be published) and appears to provide more physical meaning to the parameters.Google Scholar
  19. 19.
    F. Rochet, B. Agius, S. Rigo, J. Electrochem. Soc., 131, 914 (1984).CrossRefGoogle Scholar
  20. 20.
    C. J. Han, C. R. Helms, J. Appl. Phys., 59, 1767 (1986).CrossRefGoogle Scholar
  21. 21.
    J. M. de Larios, C. R. Helms, D. B. Kao, B. E. Deal, Appl. Surf. Sci., 30, 17 1987 ).Google Scholar
  22. 22.
    R. W. Rendall, K. L. Ngai, this volume.Google Scholar
  23. 23.
    L. M. Landsberger, W. A. Tiller, this volume.Google Scholar
  24. 24.
    E. A. Taft, J. Electrochem. Soc., 125, 968 (1978).CrossRefGoogle Scholar
  25. 25.
    C. J. Han, C. R. Helms, J. Electrochem. Soc., 132, 402 (1985).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1988

Authors and Affiliations

  • C. R. Helms
    • 1
  • J. de Larios
    • 1
  1. 1.Stanford Electronics LaboratoriesStanford UniversityStanfordUSA

Personalised recommendations