ARXPS Analysis of Si-SiO2-Interfaces

  • J. Halbritter


Angle resolved x-ray photo electron spectroscopy (ARXPS) results in a very detailed analysis of minor amounts ( ≧ 0.3 nm) of interface compounds and their spatial distribution. First experimental results on the Si-SiO2interface used in microelectronics, are presented. The ARXPS results on plane, single cristalline (100) Si, oxidized to about 5nm SiO2, indicate a planar Si surface connected by about one monolayer Si* to a compressed SiO2 layer coated by amorphous SiO2. Seperated from this interface region Si cluster stabilized by a compressing SiO 2 * coating have been found in SiO2. Dehydrogenation is showing up in binding energy changes in SiO2 indicating that H or OH is not only saturating Si* but is bonded also to SiO2. The O deficiency of the amorphous SiO2−x coating is increasing towards the outer SiO2 surface.


Shape Function Strain Relaxation Interface Oxide Thick Oxide Si02 Coating 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    The Physics of Si02 and its Interfaces (S. T. Pantelides Ed., Pergamon, New York, 1978); Semiconductor Silicon (edited by H.R. Huff, T. Abe, B. Kolbesen Electrotechnical Society, N.J. 1986); Insulating films on Semiconductors (edited by M. Schulz, G. Pensl, Springer Series in Electrophysics, 7, Springer, Berlin, 1981)Google Scholar
  2. 2.
    M. Schulz, Surf. Sci. 132, 422 (1983)CrossRefGoogle Scholar
  3. 3.
    N.S. Mc Intyre, W.M. Lau, J.R. Mycroft, S.I. Ingrey, to be pubi.Google Scholar
  4. 4.
    M. Grundner, H. Jacob, Appl. Phys. A39, 73 (1986)Google Scholar
  5. 5.
    G. Hollinger, F.J. Himpsel, Appl. Phys. Lett. 44, 93 (1984);CrossRefGoogle Scholar
  6. W. Braun, H. Kuhienbeck, Surf. Sci. 180, 279 (1987)CrossRefGoogle Scholar
  7. 6.
    F.J. Grunthaner, P.J. Grunthaner, Mat. Sci. Reports 1, 65 (1986);CrossRefGoogle Scholar
  8. 7.
    A. Darlinski, J. Halbritter, J. Vac. Sci. Technol. A5, 1235 (1987)Google Scholar
  9. 8.
    J. Halbritter, J. Mat. Res. 2, May (1988)Google Scholar
  10. 9.
    A. Darlinski, J. Halbritter, Surf. Interface Anal. 10, 223 (1987)CrossRefGoogle Scholar
  11. 10.
    Research Lab. Siemens-MünchenGoogle Scholar
  12. 11.
    A. Ourmazd, D.W. Taylor, J.A. Rentschler, J. Bevk, Phys. Rev. Lett. 59, 213 (1987)CrossRefGoogle Scholar
  13. F.M. Ross, W.M. Stobbs, Surf. Interf. Anal. 12 (’88)Google Scholar
  14. 12.
    A. Jablonski, H. Ebel, Surf. Interface Anal. 6, 21 (1984)CrossRefGoogle Scholar
  15. 13.
    W. Huschka, E. Umbach, Diplom thesis (TU-Mûnchen, 1988 )Google Scholar
  16. 14.
    F. Rochet, B. Agius, S. Riger, J. Electroch. Soc. 131, 914 (1984);CrossRefGoogle Scholar
  17. P. Collot, G. Gautherin, B. Agius, S. Rigo, F. Rochet, Phil. Mag B52, 1051 (1985) and to be published.Google Scholar
  18. 15.
    S.I. Raider, R. Futsch in: The Physics of Si02 and its Interfaces (Ed. S.T. Pantelides, Pergamon, New York, 1978 ); 384Google Scholar
  19. 16.
    A.H. Carim, thesis (Stanford University, 1987 )Google Scholar
  20. 17.
    J. Halbritter, Appl. Phys. A43, 1 and J. Less-Common Mat. 139, 133 (1987)Google Scholar
  21. 18.
    L.B. Hazell, I.S: Brown, F. Freisinger, Surf. Interface Anal. 8, 25 (1986)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1988

Authors and Affiliations

  • J. Halbritter
    • 1
  1. 1.Kernforschungszentrum Karlsruhe GmbH Institut für Kernphysik IIKarlsruheFederal Republic of Germany

Personalised recommendations