Skip to main content

Abstract

Oxidation thicknesses for silicon in oxygen above 1100°C and for certain silicides are proportional to square root time (parabolic kinetics). The absolute value and temperature dependence of these results match closely with measurements of the permeation of molecular oxygen through bulk amorphous silica. Deviations from parabolic kinetics are accompanied by a decrease in the parabolic growth coefficient. No evidence for surface reactions influencing kinetics is found. A model involving strain in the oxide layer can account for the deviations from parabolic kinetics and the decrease in oxygen permeation through the oxide.

“He said, that new systems of nature were but new fashions, which would vary in every age; and even those who pretend to demonstrate them from mathematical principles, would fluorish but a short period of time, and be out of vogue when that was determined.” -Swift

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. F. J. Norton, Nature 191, 701 (1961).

    Article  CAS  Google Scholar 

  2. R. H. Doremus, J. Phys. Chem. 80, 1773 (1976).

    Article  CAS  Google Scholar 

  3. R. H. Doremus, Thin Solid Films 122, 191 (1984).

    Article  CAS  Google Scholar 

  4. B. E. Deal and A. S. Grove, J. Appl. Phys. 36, 3770 (1965).

    Article  CAS  Google Scholar 

  5. G. H. Schiroky, J. Matis. Sci. 22, 3595 (1987).

    Article  CAS  Google Scholar 

  6. R. R. Razouk, M. E. Thomas, and S. L. Pressacco, J. Appl. Phys. 53, 5342 (1982).

    Article  CAS  Google Scholar 

  7. P. J. Jorgensen, J. Appl. Phys. 37, 874 (1962).

    CAS  Google Scholar 

  8. R. H. Doremus, “Glass Science”, Wiley, New York, 1973, Chapt. 8.

    Google Scholar 

  9. R. H. Doremus and A. Szewczyk, J. Matis. Sci. 22, 2887 (1987).

    Article  CAS  Google Scholar 

  10. A. Reisman, E. H. Nicollian, C. K. Williams, and C. J. Merz, J. Electronic Matis. 16, 45 (1987).

    Article  CAS  Google Scholar 

  11. K. Hirabayashi and J. Iwamura, J. Elect. Soc. 120, 1595 (1973).

    Article  CAS  Google Scholar 

  12. C. J. Han and C. R. Helms, J. Appl. Phys. 59, 1767 (1986).

    Article  CAS  Google Scholar 

  13. J. Blanc, Phil. Mag. 55B, (1987); J. Electrochem. Soc. 133, 1981 (1986).

    Google Scholar 

  14. R. H. Doremus, “Rates of Phase Transformations”, Academic Press, Orlando, FL, 1985.

    Google Scholar 

  15. D. R. Wolters and A. T. A. Zegers van Duynhoven in “Silicon Nitride and Silicon Oxide Thin Insulating Films”, Electrochem. Soc., Pennington, N.J., 1987, p. 277.

    Google Scholar 

  16. J. A. Costello and R. E. Tressler, J. Electrochem. Soc. 131, 1944 (1984).

    Article  CAS  Google Scholar 

  17. B. E. Deal, D. W. Hess, J. D. Plummer, and C. P. Ho, J. Electrochem. Soc. 125, 339 (1978).

    Article  CAS  Google Scholar 

  18. H. Z. Massoud, Ph.D. Thesis, Stanford Univ. (1983).

    Google Scholar 

  19. N. Birks and G. H. Meier, “Introduction to High Temperature Oxidation of Metals”, Edward Arnold, London (1983), p. 55.

    Google Scholar 

  20. R. H. Doremus, Phys. Chem. Glasses 10, 28 (1969).

    Google Scholar 

  21. A. Kats, Philips Res. Repts. 17, 133, 201 (1962).

    Google Scholar 

  22. R. Haul and G. Dumbgen, Z. Electrochem. 66, 636 (1962).

    CAS  Google Scholar 

  23. W. A. Lanford, to be published in J. Noncryst. Solids.

    Google Scholar 

  24. G. Hetherington, K. H. Jack, and M. W. Ramsay, Phys. Chem. Glasses 6, 6 (1965).

    CAS  Google Scholar 

  25. G. H. Frischat, J. Am. Ceram. Soc. 51, 528 (1970).

    Article  Google Scholar 

  26. C. K. Huang, R. J. Jaccodine, and S. R. Butler in “Silicon Nitride and Silicon Dioxide Thin Insulating Films”, V. J. Kapoor and K. T. Hankins, eds., Electrochem. Soc., Pennington, N.J. 1987, p. 343.

    Google Scholar 

  27. M. Nogami and M. Tomozawa, J. Am. Ceram. Soc. 67, 151 (1984).

    Article  CAS  Google Scholar 

  28. E. A. Taft, J. Electrochem. Soc. 125, 968 (1978); 127, 993 (1980); 132, 2486 (1985).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer Science+Business Media New York

About this chapter

Cite this chapter

Doremus, R.H. (1988). Oxidation of Silicon: Tests of Mechanisms. In: Helms, C.R., Deal, B.E. (eds) The Physics and Chemistry of SiO2 and the Si-SiO2 Interface. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0774-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0774-5_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-0776-9

  • Online ISBN: 978-1-4899-0774-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics