Advertisement

Current-Induced Charges and Hydrogen Species Distributions in MOS Silicon Dioxide Films

  • R. Gale
  • H. Chew
  • F. J. Feigl
  • C. W. Magee

Abstract

The effect of low temperature incorporation of H2O and D2O on ultradry thermal silicon dioxide films has been studied using chemical analysis by secondary ion mass spectrometry and oxide capacitor current flow by avalanche injection of electrons from the silicon substrate. Hydrogen was transported from the metal interface to the silicon interface during current flow and diffused into the silicon to form electrically inactive complexes with boron donors. The presence of hydrogen near the silicon interface enhanced the production of traps at this interface during current flow. Also during current flow, electrons were captured by oxide defects containing hydrogen or deuterium impurities. The capture cross sections for defects involving the two isotopes differed by an order of magnitude.

Keywords

Areal Density Interface Trap Silicon Dioxide Film Interface Trap Density Deuterium Concentration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. H. Nicollian, C. N. Berglund, P. F. Schmidt, and J. M. Andrews, J. Appl. Phys., 42, 5654 (1971).CrossRefGoogle Scholar
  2. 2.
    F. B. McLean, IEEE Trans. Nucl. Sci., NS-27, 1651 (1980).Google Scholar
  3. 3.
    F. J. Feigl, D. R. Young, D. J. DiMaria, S. Lai, and J. Calise, J. Appl. Phys., 52, 5665 (1981).CrossRefGoogle Scholar
  4. 4.
    C. T. Sah, J. Sun, and J. Tzou, Appl. Phys. Lett., 43, 204 (1983).CrossRefGoogle Scholar
  5. 5.
    D. L. Griscom, J. Appl. Phys., 58, 2524 (1985).CrossRefGoogle Scholar
  6. 6.
    R. Gale, F. J. Feigl, C. W. Magee, and D. R. Young, J. Appl. Phys., 54, 6938 (1983).CrossRefGoogle Scholar
  7. 7.
    F. J. Feigl, R. Gale, H. Chew, C. W. Magee, and D. R. Young, Nucl. Inst. and Meth. in Phys. Res., B1, 348 (1984).CrossRefGoogle Scholar
  8. 8.
    R. Gale, Ph. D. Dissertation (Lehigh University, Bethlehem, Penna., 1984), unpublished. Available from University Microfilms.Google Scholar
  9. 9.
    F. J. Feigl, VLSI Microelectronics: Microstructure Science, Vol. 6, N. Einspruch and G. Larrabee, eds. ( Academic, New York, 1983 ), p. 147.Google Scholar
  10. 10.
    E. H. Poindexter and P. J. Caplan, Prog. Surf. Sci., 14, 201 (1983).CrossRefGoogle Scholar
  11. 11.
    D. R. Young, private communication.Google Scholar
  12. 12.
    D. Emin, M. Baskes, and W. Wilson, Phys. Rev. Lett., 42, 791 (1979).CrossRefGoogle Scholar
  13. 13.
    G. G. DeLeo and W. B. Fowler, Phys. Rev. B, 31, 6861 (1985).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1988

Authors and Affiliations

  • R. Gale
    • 1
  • H. Chew
    • 1
  • F. J. Feigl
    • 1
  • C. W. Magee
    • 2
  1. 1.Department of Physics and Sherman Fairchild CenterLehigh UniversityBethlehemUSA
  2. 2.David Sarnoff Research CenterPrincetonUSA

Personalised recommendations