Advertisement

Structural Relaxation Effects in Dry Thermal Silicon Dioxide Films on Silicon

  • L. M. Landsberger
  • W. A. Tiller

Abstract

In recent papers, work was presented on (i) inert thermal anneals of lowtemperature-grown (highly-stressed) SiO2 films, (ii) two-step oxidations to relate the second-step oxygen transport characteristics to the density of the existing film, and (iii) negative-point oxygen corona-discharge relaxation of low-temperaturegrown SiO2 films. This paper will review some of the previous work, present some more comprehensive results, and highlight the relationship between the SiO2 film structure and transport of oxidant through the film. Oxidant transport through an SiO2 film is found to depend strongly on the state of relaxation of the film.

Keywords

Oxidation Step Si02 Film SiO2 Film Defense Advance Research Project Agency Intrinsic Stress 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    B.E. Deal, A.S. Grove, J. Appl. Phys. 36, 3770 (1965).CrossRefGoogle Scholar
  2. [2]
    A. Fargeix, G. Ghibaudo, J. Appl. Phys. 54, 7153 (1983).CrossRefGoogle Scholar
  3. [3]
    G.C. Sarti, F. Santarelli, and G. Camera Roda, Chem. Eng. Sci. 41, 2699 (1986).CrossRefGoogle Scholar
  4. [4]
    R.H. Doremus, Thin Solid Films 122, 191 (1984).Google Scholar
  5. [5]
    R.H. Doremus, J.Electrochem. Soc. 134, 2001 (1987).Google Scholar
  6. [6]
    C.J. Han, and C.R. Helms, J. Electroch em. Soc. 134, 1299 (1987).Google Scholar
  7. [7]
    A. Reisman, E.H. Nicollian, C.K. Williams, and C.J. Merz, Journal of Electronic Materials 16, 45 (1987).CrossRefGoogle Scholar
  8. [8]
    J. Blanc, presented at the Symposium on Silicon Nitride and Silicon Dioxide Thin Insulating Films at the Electrochemical Society Meeting inm San Diego, CA, Oct. 20–24, 1986.Google Scholar
  9. [9]
    H.M. Cohen and R. Roy, Phys. Chem. Classes 6, 149 (1965).Google Scholar
  10. [10]
    J. Arndt and D. Stoefer, J. Am. Ceram. Soc. 10, 117 (1969).Google Scholar
  11. [11]
    J.D. Mackenzie, J. Am. Ceram. Soc. 46, 470 (1963).Google Scholar
  12. [12]
    G. Hetherington, K.H. Jack, and J.C. Kennedy, Phys. Chem. Glasses 5 130 (1964).Google Scholar
  13. [13]
    E.P. EerNisse, Appl. Phys. Lett., 35, 8 (1979).CrossRefGoogle Scholar
  14. [14]
    E.A. Taft, J. Electrochem. Soc., 125, 968 (1978).Google Scholar
  15. [15]
    E.A. Taft, J.Electrochem. Soc., 127, 993 (1980).Google Scholar
  16. [16]
    W.A. Tiller, J. Electrochem. Soc. 127, 619 (1980).Google Scholar
  17. [17]
    E.A. Irene, E. Tierney, J. Angilello, J. Electrochem. Soc. 129, 2594 (1982).CrossRefGoogle Scholar
  18. [18]
    E.A. Taft, J. Electrochem. Soc. 134, 475 (1987).Google Scholar
  19. [19]
    B.J. Mrstic, A.G. Revesz, M. Ancona, and H.L. Hughes, J. Electrochem. Soc. 134, 2020 (1987).CrossRefGoogle Scholar
  20. [20]
    L.M. Landsberger, and W.A. Tiller, Appl. Phys. Lett. 51, 1416 (1987).CrossRefGoogle Scholar
  21. [21]
    L.M. Landsberger, and W.A. Tiller, Appl. Phys. Lett. 49, 143 (1986).CrossRefGoogle Scholar
  22. [22]
    L.M. Landsberger, and W.A. Tiller, in “Symposium on Silicon Nitride and Silicon Dioxide Thin Insulating Films” at the Electrochemical Society Meeting in San Diego, CA, Oct. 20–24, 1986, Proc. Vol. 87–10, p. 333.Google Scholar
  23. [23]
    L.M. Landsberger, and W.A. Tiller, m in “Symposiu on Photon, Beam, and Plasma Stimulated Chemical Processes at Surfaces” at the Materials Research Society Meeting in Boston, MA, Dec. 1–6, 1986, Mat. Res. Soc. Symp. Proc. Vol. 75, p. 803.Google Scholar
  24. [24]
    L.M. Landsberger, D.B. Kao and W.A. Tiller, J. Electrochem. Soc. 135, No. 7, (1988).Google Scholar
  25. [25]
    I.H. Malitson, J. Opt. Soc. America, 55, 1205 (1965).Google Scholar
  26. [26]
    D.J. Chin, S.M. Hu, R. Dutton, and J. Moll, IEEE Trans. Electron Devices ED-30, 744 (1983).Google Scholar
  27. [27]
    E. Kobeda, and E.A. Irene, J. Vac. Sci. Technol. B 5, 15 (1987).CrossRefGoogle Scholar
  28. [28]
    M. Hamasaki, Solid State Electronics, 25, 479 (1982).CrossRefGoogle Scholar
  29. [29]
    E.A. Irene, J. Electrochem. Soc., 129, 413 (1982).Google Scholar
  30. [30]
    C.J. Han, C.R. Helms, J. Electrochem. Soc., 132, 516 (1985).CrossRefGoogle Scholar
  31. [31]
    J.K. Srivastava, E.A. Irene, J.Electrochem. Soc., 132, 2815 (1985).CrossRefGoogle Scholar
  32. [32]
    E.A. Taft, J. Electrochem. Soc., 132, 2486 (1985).Google Scholar
  33. [33]
    W.A. Tiller, J. Electrochem. Soc. 130, 501 (1983).Google Scholar
  34. [34]
    L.M. Landsberger, Ph.D. Thesis, Stanford University, June 1988.Google Scholar

Copyright information

© Springer Science+Business Media New York 1988

Authors and Affiliations

  • L. M. Landsberger
    • 1
  • W. A. Tiller
    • 2
  1. 1.Department of Electrical EngineeringUSA
  2. 2.Department of Materials ScienceEngineering Stanford UniversityStanfordUSA

Personalised recommendations