Structural Relaxation and Growth of SiO2 Films on Si

  • R. W. Rendell
  • K. L. Ngai


Recent works have noted that the structural relaxation of thermally grown SiO2 films and of pressure compacted silica glass both consist of an initial rapid change to a level which depends on temperature followed by a slow approach to equilibrium. In this work we discuss structural changes of thermally grown SiO2 using concepts and models previously developed for quenched glasses. These naturally exhibit the observed features when applied to thermal oxides. They are based on a time-dependent rate coefficient which leads to a Kohlrausch stretched exponential form exp. This is generalized to include a dependence on thermal and annealing history through structural variations of n and τ*. The physical interpretation of these models is described, numerical simulations of relaxation of a thermally grown oxide are presented, and the relations between different relaxation times and activation energies are discussed.


Apparent Activation Energy Thermal Oxide Silica Glass Structural Relaxation Structural Equilibrium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E.A. Taft, J. Electrochem. Soc. 125, 968 (1978).Google Scholar
  2. 2.
    E.A. Irene, E. Tierney and J. Angilello, J. Electrochem. Soc. 129, 2594 (1982).CrossRefGoogle Scholar
  3. 3.
    B.J. Mrstik, A.G. Revesz, M. Ancona and H.L. Hughes, J. Electrochem. Soc. 134, 2020 (1987).CrossRefGoogle Scholar
  4. 4.
    L.M. Landsberger and W.A. Tiller, Appl. Phys. Lett. 151, 1418 (1987).Google Scholar
  5. 5.
    J.D. MacKenzie, J. Am. Ceram. Soc. 46, 470 (1963).Google Scholar
  6. 6.
    J. Arndt and D. Stoeffler, Phys. Chem. Glasses 10, 117 (1969).Google Scholar
  7. 7.
    E.H. Nicollian and A. Reisman, J. Elec. Mat. 17, 263 (1988).CrossRefGoogle Scholar
  8. 8.
    R.W. Rendell, K.L. Ngai, G.R. Fong and J.J. Aklonis, Macromolecules 20, 1070 (1987).CrossRefGoogle Scholar
  9. 9.
    C.T. Moynihan, P.B.Macedo, C.J. Montrose, P.R. Gupta, M.A. DeBolt, J. F. Dill, B.B. Don, P.W. Drake, A.J. Easteal, P.B. Elterman, R.P. Moeller, H. Sasabe, and J.A. Wilder, Ann. N.Y. Acad. Sci. 279, 15 (1976).Google Scholar
  10. 10.
    A.J. Kovacs, J.J. Aklonis, J.M. Hutchinson, and A.R. Ramos, J. Polym. Sci., Poly. Phys. Ed. 17, 1097 (1979).CrossRefGoogle Scholar
  11. 11.
    R.L. Ngai, R.W. Rendell, A.R. Rajagopal and S. Teitler, Ann. N.Y. Acad. Sci. 484, 150 (1986).CrossRefGoogle Scholar
  12. 12.
    J.A. Bucaro and H.D. Dardy, J. Non-Cryst. Solids 24, 121 (1977).CrossRefGoogle Scholar
  13. 13.
    J.J Mills, J. Non-Cryst. Solids 14, 255 (1974).CrossRefGoogle Scholar
  14. 14.
    A.Q. Tool, J. Amer.Ceram.Soc. 29, 240 (1946).Google Scholar
  15. 15.
    E.A. Irene, D.W. Dong and R.J. Zeto, J. Electrochem. Soc. 127, 396 (1980).CrossRefGoogle Scholar
  16. 16.
    J.A. Bucaro, H.D. Dardy and R.D. Corsaro, J. Appl. Phys. 46, 741 (1975).CrossRefGoogle Scholar
  17. 17.
    J.E. Shelby, J. Non Cryst. Solids 14, 288 (1974).Google Scholar
  18. 18.
    E.A. Taft and L. Cordes, J. Electrochem. Soc. 126, 131 (1979).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1988

Authors and Affiliations

  • R. W. Rendell
    • 1
  • K. L. Ngai
    • 1
  1. 1.Naval Research LaboratoryUSA

Personalised recommendations