Anodic SiO2 for Low Temperature Gate Dielectrics

  • Keyvan Sayyah


Electrical properties of anodic SiO2 grown at room temperature and annealed at 450℃ have been shown to closely approach those of thermal SiO2. Midgap interface state densities in the low-1010 cm−2.eV−1. oxide surface charge at flatband in the low-1010 cm−2. average breakdown fields in excess of 10 MV/cm. and do resistivities above 1016 Ω.cm at 1MV/cm have been measured. The oxide surface charge at flatband is thickness dependent. The dependence of electrical and structural properties on various annealing conditions will be discussed.


Interface State Thermal Oxide Anodic Oxide Grown Thermal Oxide Breakdown Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Batey and E. Tierney, J. Appl. Phys. 60. 3136 (1986).CrossRefGoogle Scholar
  2. 2.
    J. Batey. E. Tierney. and T.N. Nguyen. IEEE Electron Device Lett. EDL-8. 148 (1987).Google Scholar
  3. 3.
    G. Lucovsky, P.D. Richard. D.V. Tsu. S.Y. Lin. And R.J. Markunas. J. Vac. Sci. Technol. A. 4. 681 (1986).Google Scholar
  4. 4.
    U. Sharma. RCA Review. 47. 551 (1986)Google Scholar
  5. 5.
    P.K. Boyer, G.A. Roche W.H. Ritchie, and G.J. Collins. Appl. Phys. Lett. 40. 716 (1982).Google Scholar
  6. 6.
    K. Inoue. M. Michimori, M. Okuyama, and Y. Hamakawa. Jpn. J. Appl. Phys. 26. 805 (1987).Google Scholar
  7. 7.
    H. Richter and T.E. Orlowski. J. Appt. Phys. 56. 2351 (1984).Google Scholar
  8. 8.
    S. Taylor, E. E.cleston. and P. Watkinson. Electron. Lett., 23. 732 (1987).CrossRefGoogle Scholar
  9. 9.
    S. Kimura. E. Murakami. K. Miyake. T. Warabisako. H. Sunami, and T. Tokuyama. J. Electrochem. Soc. 132. 1460 (1985).CrossRefGoogle Scholar
  10. 10.
    A.K. Ray and Asman, J. Electrochem. Soc. 128, 2466 (1981).CrossRefGoogle Scholar
  11. 11.
    B.R. Bennett. J.P. Lorenzo, and K. Vaccaro. Appl. Phys. Lett. 50. 197 (1987).Google Scholar
  12. 12.
    B.R. Bennett. J.P. Lorenzo, and K. Vaccaro, Electron. Lett. 24. 172 (1988).CrossRefGoogle Scholar
  13. 13.
    S. Suyama. A. Okamoto, and T. Serikawa. J. Electrochem. Soc. 134. 2260 (1987).Google Scholar
  14. 14.
    P.F. Schmidt and W. Michel. J. Electrochem. Soc. 104. 230 (1957).Google Scholar
  15. 15.
    A.G. Revesz. J. Electrochem. Soc. 114. 629 (1967).CrossRefGoogle Scholar
  16. 16.
    J.D.E. Beynon. G.G. Bloodworth, and I.M. Mcleod, Solid-State Electronics. 16. 309 (1973).CrossRefGoogle Scholar
  17. 17.
    H. Hasegawa. S. Arimoto. J. Nanjo, H. Yamamoto. and H. Ohno, J. Electrochem. Soc. 135. 424 (1988).CrossRefGoogle Scholar
  18. 18.
    H. Yamamoto. T. Sawada. S. Arimoto, H. Hasegawa. and H. Ohno. Electron. Lett., 19, 607 (1983).Google Scholar
  19. 19.
    G. Mende. K.D. Butter. and B. Schmidt, Thin Solid Films. 102, 65 (1983).CrossRefGoogle Scholar
  20. 20.
    I.W. Boyd and J.1.B. Wilson. J. Appl. Phys., 62. 3195 (1987)Google Scholar
  21. 21.
    P.G. Pai. S.S. Chao. Y. Takagi. and G. Lucovsky, J. Vac. Sci. Technol. A. 4. 689 (1986).Google Scholar
  22. 22.
    W.A. Pliskin and H.S. Lehman. J. Electrochem. Soc. 112. 1013 (1965).Google Scholar
  23. 23.
    I.W. Boyd and J.I.B. Wilson, J. Appt. Phys. 53. 4166 T982 ).Google Scholar
  24. 24.
    E.H. Nicollian and J.R. Brews. MOS Physics and Technology, Wiley. New York. 1982.Google Scholar
  25. 25.
    S. Seki. T. Unagami. and B. Tsujiyama. J. Electrochem. Soc. 131. 2621 (1984).CrossRefGoogle Scholar
  26. 26.
    G. Mende and J. Wende. Thin Solid Films, 142. 21 (1986).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1988

Authors and Affiliations

  • Keyvan Sayyah
    • 1
  1. 1.Hughes Research LaboratoriesMalibuUSA

Personalised recommendations