Historical Perspectives of Silicon Oxidation

  • Bruce E. Deal

Abstract

Thermal silicon dioxide has been a critical part of silicon semiconductor technology since the late 1950’s. In 1965, oxidation kinetics were characterized by the linear-parabolic expression for both dry oxygen and steam over a wide range of process variables. Since then, numerous attempts have been made to model the dry O2 oxidation process in the 0–30 nm thickness range where data have indicated a departure from the linear-parabolic relationship. These and other historical trends are reviewed, with emphasis being placed on the factors and process variables which affect oxidation kinetics and associated oxide properties. Future device directions and corresponding requirements for thermal oxides are also reviewed.

Keywords

Oxidation Process Thermal Oxidation Oxide Thickness Oxidation Kinetic Parabolic Rate Constant 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C.J. Frosch and L. Derick, J. Electrochem. Soc., 104, 547 (1957); 105, 695 (1958).CrossRefGoogle Scholar
  2. 2.
    M.M. Atalla, E. Tannenbaum, and J. Scheibner, Bell Svs. Tech. J., 38, 749 (1959).Google Scholar
  3. 3.
    J. R. Ligenza and W.G. Spitzer, J. Phvs. Chem. Solids, 14, 131 (1960).CrossRefGoogle Scholar
  4. 4.
    J.R. Ligenza, J. Electrochem. Soc., 109, 73 (1962).CrossRefGoogle Scholar
  5. 5.
    J.A. Hoerni, IRE Electron Devices Meeting, Washington, DC, 1960; U.S. Patents 3,025,589 (1962) and 3, 064, 167 (1962).Google Scholar
  6. 6.
    D. Kahng and M.M. Atalla, IRE Solid State Research Conference, Carnegie Institute of Technology, Pittsburgh, PA, 1960; D. Kahng, U.S. Patent 3, 102, 230 (1963).Google Scholar
  7. 7.
    J.T. Law, J. Phys. Chem. 62, 1200 (1957).CrossRefGoogle Scholar
  8. 8.
    B.E. Deal, J. Electrochem. Soc., 110, 527 (1963).CrossRefGoogle Scholar
  9. 9.
    B.E. Deal and A.S. Grove, J. ADD1. Phys., 36, 3770 (1965).Google Scholar
  10. 10.
    F.J. Norton, Nature, 171, 701 (1961).CrossRefGoogle Scholar
  11. 11.
    A.J. Moulson and J.P. Roberts, Trans. Faraday Seoc., 57, 1208 (1961).CrossRefGoogle Scholar
  12. 12.
    J.R. Ligenza, J. Phys. Chem., 65, 2011 (1961).Google Scholar
  13. 13.
    W.A. Pliskin, IBM, J. Rsch., 10, 198 (1966).Google Scholar
  14. 14.
    B.E. Deal, M. Sklar, A.S. Grove, and E.H. Snow, J. Electrochem. Soc., 114, 266 (1967).CrossRefGoogle Scholar
  15. 15.
    E.A. Irene, H.Z. Massoud, and E. Tierney, J. Electrochem. Soc., 1253 (1986).Google Scholar
  16. 16.
    E.A. Lewis and E.A. Irene, J. Electrochem. Soc., 134, 2332 (1987).CrossRefGoogle Scholar
  17. 17.
    L.N. Lie, R.R. Razouk, and B.E. Deal, J. Electrochem. Soc., 129, 2828 (1982).CrossRefGoogle Scholar
  18. 18.
    E.P. EerNise, App. Phvs. Lett., 30, 290 (1977).CrossRefGoogle Scholar
  19. 19.
    H.Z. Massoud, J.D. Plummer, and E.A. Irene, J. Electrochem. Soc., 132, 2693 (1985).CrossRefGoogle Scholar
  20. 20.
    a) S.P. Murarka, in “ULSI Science and Technology–1987,” S. Broydo and C.M. Osburn, Eds., pp. 87–100, Vol. 87–11, The Electrochemical Society, Pennington, NJ (1987); (b) S. Rigo in “Instabilities in Silicon Devices, Vol. 1,” G. Barbottin and A. Vapaille, Eds., pp. 5–100, Elsevier Science Publishers, Amsterdam (1986).Google Scholar
  21. 21.
    N. Cabrera and N.F. Mott,.Reat. Proms. Phvs., 12, 163 (1948).Google Scholar
  22. 22.
    P.J. Jorgensen, J. Chem. Phys., 874 (1962).Google Scholar
  23. 23.
    J. Blanc, ADpI. Phys. Lett., 33, 424 (1978).Google Scholar
  24. 24.
    S.M. Hu, ADD1. Phys. Lett., 42, 872 (1983).Google Scholar
  25. 25.
    E.A. Irene and Y.J. van der Meulen, J. Electrochem. Soc., 123, 1380 (1976).CrossRefGoogle Scholar
  26. 26.
    M. Hamasaki, Solid State Electronics, ZA, 479 (1982).Google Scholar
  27. 27.
    S.A. Schafer and S.A. Lyon, ADpI. Phvs. Lett., 47, 154 (1985).CrossRefGoogle Scholar
  28. 28.
    A.G. Revesz and R.J. Evans, J. Phys. Chem. Solids, 30, 551 (1969).CrossRefGoogle Scholar
  29. 29.
    E.A. Irene, J. Electrochem. Soc., 125, 1708 (1978).CrossRefGoogle Scholar
  30. 30.
    W.A. Tiller, J. Electrochem. Soc., 130, 501 (1983).CrossRefGoogle Scholar
  31. 31.
    G.F. Derbenwick and R.E. Anderson, Private Communication.Google Scholar
  32. 32.
    E.P. EerNesse, Appl. Phys. Lett., 35, 8 (1979).CrossRefGoogle Scholar
  33. 33.
    E.A. Irene, J. Appl,. Phys., 54, 5416 (1983).CrossRefGoogle Scholar
  34. 34.
    R.H. Doremus, Thin Solid Films, 122, 191 (1984).CrossRefGoogle Scholar
  35. 35.
    A. Fargeix, G. Ghibaudo, and G. Kamarinos, J. Appl. Phys., 54, 2878 (1983).CrossRefGoogle Scholar
  36. 36.
    H.Z. Massoud, J.D. Plummer, and E.A. Irene, J. Electrochem. Soc., 132, 1745, 2685 (1985).CrossRefGoogle Scholar
  37. 37.
    V. Murali and S.P. Murarka, J. Appl. Phys., 60, 2106 (1986).CrossRefGoogle Scholar
  38. 38.
    F.J. Grunthaner and J. Maserjian, IEEE Trans. Nucl. Soi., NS-24, 2108 (1977).Google Scholar
  39. 39.
    F.N. Schwettmann, K.L. Chiang, and W.A. Brown, Paper No. 276 in Spring Meeting of The Electrochemical Society, p. 688 Extended Abstracts 78–1, Seattle, WA (1978).Google Scholar
  40. 40.
    M. Morita, T. Kubo, T. Ishihara, and M. Hirose, Appl. Phys. Lett., 45, 1312 (1985); 47, 253 (1985).Google Scholar
  41. 41.
    M.A. Hopper, R.A. Clarke, and L. Young, J. Electrochem. Soc., 122, 1216 (1975).CrossRefGoogle Scholar
  42. 42.
    Y.J. van der Meulen, J. Electrochem. Soc., 119, 530 (1972).CrossRefGoogle Scholar
  43. 43.
    C.J. Han and C.R. Helms, J. Electrochem. Soc., 134, 1297 (1987).CrossRefGoogle Scholar
  44. 44.
    A. Reisman, E.H. Nicollian, C.K. Williams, and C.J. Merz, J. Electronic Mat., 16, 45 (1987).CrossRefGoogle Scholar
  45. 45.
    G. Gould and E.A. Irene, J. Electrochem. Soc., 134, 1031 (1987).CrossRefGoogle Scholar
  46. 46.
    J. Blanc, Phil. Mag., 55, 685 (1987).CrossRefGoogle Scholar
  47. 47.
    J. Blanc, private communication.Google Scholar
  48. 48.
    J. Ruzyllo, G.T. Duranko, and A.M. Hoff, J. Electrochem. Soc., 134, 2052 (1987).CrossRefGoogle Scholar
  49. 49.
    D.B. Kao, B.E. Deal, J.M. deLarios, and C.R. Helms, thi Proceedings, p. (1988).Google Scholar
  50. 50.
    R.B. Marcus and T.T. Sheng, J. Electrochem. Soc., 129, 1278 (1982).CrossRefGoogle Scholar
  51. 51.
    D.B. Kao, J.P. McVittie, W.D. Nix, and K.C. Saraswat, IEEE Trans. Electron Devices, ED-34, 1008 (1987); ED-35, 25 (1988).Google Scholar
  52. 52.
    J.D. Plummer, Solid State Tech., 29 (3), 61 (1986).Google Scholar
  53. 53.
    R.B. Fair, App. Solid State Science, Suppl. 2B, Academic Press, p. 1 (1981).Google Scholar

Copyright information

© Springer Science+Business Media New York 1988

Authors and Affiliations

  • Bruce E. Deal
    • 1
  1. 1.Fairchild Research CenterNational Semiconductor CorporationSanta ClaraUSA

Personalised recommendations