Thermodynamics pp 365-438 | Cite as

Thermodynamics of Electromagnetism

  • R. E. Rosensweig

Abstract

In the past chemical engineers have paid scant attention to the thermodynamics of electromagnetic systems. With the advent of new processing concepts, novel systems, and new materials including higher temperature superconductors, the topic is assuming a greater importance. This treatment introduces the student or graduate to the subject, building on fundamental principles in sequential fashion with the goal of encompassing both physicochemical and transport principles. A number of diverse but related topics are developed in a unified fashion in comparison to the existing literature in the area which is incomplete, scattered, and often deficient. Certain of the topics developed are important in current engineering practice and others represent areas for future innovation.

Keywords

Magnetic Field Magnetic Fluid Helmholtz Free Energy Bohr Magneton Entropy Production Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. W. Camp and E. F. Johnson, Magnetic effects in certain systems of chemical engineering interest, I&EC Fundamentals, 4(2), 145–150 (1965).CrossRefGoogle Scholar
  2. 2.
    A. J. Meachin and M. W. Biddulph, The effect of high magnetic fields on the vapour pressure of nitrogen, oxygen and argon, Cryogenics, 18, 29–32 (1978).CrossRefGoogle Scholar
  3. 3.
    K. Denbigh, The Principles of Chemical Equilibrium, Third Edition, Cambridge University Press, London (1971).Google Scholar
  4. 4.
    F. B. Hildebrand, Methods of Applied Mathematics, Prentice-Hall, Englewood Cliffs, NJ (1952).Google Scholar
  5. 5.
    R. E. Rosensweig, Ferrohydrodynamics, Cambridge University Press, New York (1985).Google Scholar
  6. 6.
    V. V. Chekanov, On measuring pressure in ferrofluid, Magnetohydrodynamics, 13(4), 394–398 (1977).Google Scholar
  7. 7.
    K. Shizawa and T. Tanahashi, Thermodynamic discussions on the basic equations of conducting magnetic fluids, Bull. JSME, 29(250), 1171–1176 (1986).CrossRefGoogle Scholar
  8. 8.
    S. R. de Groot and P. Mazur, Non-Equilibrium Thermodynamics, Dover Publications, New York (1984). Originally published by North-Holland, Amsterdam (1962).Google Scholar
  9. 9.
    E. Blums, Yu. A. Mikhailov, and R. Ozols, Heat and Mass Transfer in MUD Flows, World Scientific Publ. Co., Singapore (1987). Distributed by Taylor and Francis Inc. (in USA).CrossRefGoogle Scholar
  10. 10.
    M. D. Cowley and R. E. Rosensweig, The interfacial stability of a ferromagnetic fluid, J. Fluid Mech., 30(4), 671–688 (1967).CrossRefGoogle Scholar
  11. 11.
    P. Penfield and H. A. Haus, Electrodynamics of Moving Media, MIT Press, Cambridge, Massachusetts (1967).Google Scholar
  12. 12.
    E. G. Thomas and A. J. Meadows, Maxwell’s Equations and their Applications, Adam Hilger Ltd., Bristol and Boston (1985).Google Scholar
  13. 13.
    M. Zahn, Electromagnetic Field Theory, Wiley, New York (1979).Google Scholar
  14. 14.
    J. R. Reitz, F. J. Milford, and R. W. Christy, Foundations of Electromagnetic Theory, Addison-Wesley, Reading, Massachusetts (1979).Google Scholar
  15. 15.
    J. W. Stratton, Electromagnetic Theory, McGraw-Hill, New York (1941).Google Scholar
  16. 16.
    J. D. Jackson, Classical Electrodynamics, Wiley, New York (1975).Google Scholar
  17. 17.
    G. V. Brown, Magnetic Stirling cycles—a new application for magnetic materials, IEEE Trans. Magn. MAG-13(5)., 1146–1148 (1977).CrossRefGoogle Scholar
  18. 18.
    G. Maret, J. Kiepenheuer, and N. Boccara (eds.), Biophysical Effects of Steady Magnetic Fields, Springer-Verlag, New York (1986).Google Scholar
  19. 19.
    B. T. Chu, Thermodynamics of electrically conducting fluids, Phys. Fluids, 2(5), 473–484 (1959).CrossRefGoogle Scholar
  20. 20.
    B. C. Eu and I. Oppenheim, On the Minkowski tensor and thermodynamics of media in an electromagnetic field, Phyiica, 136A, 233–254 (1986).Google Scholar
  21. 21.
    M. Modell and R. C. Reid, Thermodynamics and its Applications, 2nd edn., Prentice-Hall, Englewood Cliffs, NJ (1983).Google Scholar
  22. 22.
    J. L. Ericksen, Thermodynamics and stability of equilibrium, Appendix G3, pp. 503-509, in: C. Truesdell, Rational Thermodynamics, second edition, Springer-Verlag, New York (1984).CrossRefGoogle Scholar
  23. 23.
    A. G. Boudouvis, J. L. Puchalla, L. E. Scriven, and R. E. Rosensweig, Normal field instability and patterns in pools of ferrofluid, J. Magn. & Magn. Mater., 65, 307–310 (1987).CrossRefGoogle Scholar
  24. 24.
    R. P. Feynman, R. B. Leighton, and M. Sands, The Feynman Lectures on Physics, Addison-Wesley, Reading, Massachusetts, sixth printing (1977). See Volume II.Google Scholar
  25. 25.
    E. A. Guggenheim, Thermodynamics, An Advanced Treatment for Chemists and Physicists, fifth revised edition, North-Holland, Amsterdam (1967).Google Scholar
  26. 26.
    K. Shizawa and T. Tanahashi, A new complete set of basic equations for magnetic fluids with internal rotation, Bull. JSME, 28(243), 1942–1948 (1985); 29(255), 2878-2884 (1986).CrossRefGoogle Scholar
  27. 27.
    S. Kamiyama and R. E. Rosensweig, Introduction to the magnetic fluids bibliography, J. Magn. & Magn. Mater., 65(2 & 3), 401–402; Magnetic fluids bibliography, 403-439 (1987).Google Scholar
  28. 28.
    R. K. Lyon, Effect of strong electrical fields on the boiling points of some alcohols, Nature, 192, 1285–1286 (1971).CrossRefGoogle Scholar
  29. 29.
    M. Date and A. Yamagishi, Generation and applications of non-destructive pulsed magnetic field, IEEE Trans. Magn., MAG-23(5), 3257–3262 (1987).CrossRefGoogle Scholar
  30. 30.
    R. L. Curl, Direct thermomagnetic splitting of water, Int. J. Hydrogen Energy, 4, 13–20 (1979).CrossRefGoogle Scholar
  31. 31.
    J. Landstreet and J. R. P. Angel, Astrophys. J., 196, 918 (1975)CrossRefGoogle Scholar
  32. M. A. Rudderman and P. G. Sutherland, Possible origin of magnetic fields in neutron stars and magnetic white dwarfs, Nat., Phys. Sci., 246, 93 (December 10, 1973).Google Scholar
  33. 32.
    B. M. Berkovsky, A. N. Vislovich, and B. E. Kashevsky, Magnetic fluid as a continuum with internal degrees of freedom, IEEE Trans. Magn., MAG-16(2), 329–342 (1980).CrossRefGoogle Scholar
  34. 33.
    E. Blums, J. Plavins, and A. Chukhrov, High-gradient magnetic separation of magnetic colloids and suspensions, J. Magn. & Magn. Mater., 39, 147–151 (1983).CrossRefGoogle Scholar
  35. 34.
    Sir H. Jeffreys, Cartesian Tensors, Cambridge University Press (1957).Google Scholar
  36. 35.
    R. Aris, Vector, Tensors, and the Basic Equations of Fluid Mechanics, Prentice-Hall, Englewood Cliffs, NJ (1962).Google Scholar
  37. 36.
    J. R. Melcher, Continuum Electromechanics, MIT Press, Cambridge, Massachusetts (1981).Google Scholar
  38. 37.
    S. Kaneto, The influence of magnetic field on chemical reactions, J. Chem. Soc. Ind. Jpn., 34, Suppl. Binding, 133B–134B (1931).Google Scholar

Copyright information

© Springer Science+Business Media New York 1989

Authors and Affiliations

  • R. E. Rosensweig
    • 1
  1. 1.Exxon Research and Engineering CompanyAnnandaleUSA

Personalised recommendations