Biodegradable Polyamides Based on 4,4′-Spirobibutyrolactone

  • David P. Vanderbilt
  • James P. English
  • Glenda L. Fleming
  • Gerald W. McNeely
  • Donald R. Cowsar
  • Richard L. Dunn


This paper describes the synthesis, structure, and some properties of a new family of biodegradable poly(amides) based on 4,4′-spirobibutyrolactone (SBBL). The polymers were synthesized using melt polymerization techniques similar to those used to prepare nylon 6,6. Both homopolymers (SBBL + diamine) and block copolymers (SBBL + diamine + nylon salt) were prepared. The homopolymer and copolymer backbones contain lactam and spirolactam groups in addition to the expected secondary amide groups. Homopolymers were found to degrade completely in neutral phosphate buffer, while the block copolymers degraded only partially in vitro and in vivo. The copolymers evoked only a mild tissue response when implanted subcutaneously in rabbits. Other properties of this unusual family of polymers are discussed.


Block Copolymer Glutaric Acid Secondary Amide Azeotropic Distillation Lactone Group 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. F. Williams, J. Mater. Sci., 17, 1233 (1982).CrossRefGoogle Scholar
  2. 2.
    J. Kopecek & K. Ulbrich, Prog. Polym. Sci., 9, 1 (1983).CrossRefGoogle Scholar
  3. 3.
    S. J. Huang in: “Encyclopedia of Polymer Science and Engineering,” Vol. 2, J. I. Kroschwitz, Ed., John Wiley & Sons, New York, 1985, p. 220.Google Scholar
  4. 4.
    G. E. Zaikov, J. Macromol. Chem., Rev. Macromol. Chem. Phys., C25, 551 (1985).CrossRefGoogle Scholar
  5. 5.
    S. J. Holland, B. J. Tighe & P. L. Gould, J. Controlled Release, 4, 155 (1986).CrossRefGoogle Scholar
  6. 6.
    T. H. Barrows, Clinical Mater., 1, 233 (1986).CrossRefGoogle Scholar
  7. 7.
    T. St. Pierre & E. Chiellini, J. Bioactive Compat. Polym., 2, 4 (1987).CrossRefGoogle Scholar
  8. 8.
    J. H. Harrison, Am. J. Surg., 95, 16 (1958).CrossRefGoogle Scholar
  9. 9.
    R. I. Leininger, V. Mirkovitch, A. Peters & W. A. Hawks, Trans. Am. Soc. Artif. Int. Organs, 10, 320 (1964).Google Scholar
  10. 10.
    R.W. Postlethwait, Ann. Surg., 171, 892 (1970).CrossRefGoogle Scholar
  11. 11.
    A. Yamanaka, K. Nakamae, M. Takeuchi, A. Momose, Y. Fukado, K. Oshima & H. Goto, Trans. Ophthamol. Soc, 104, 517 (1985).Google Scholar
  12. 12.
    J. E. Potts, R. A. Clendinning & W. B. Ackart, Degrad. Polym. Plast., (Prepr.) Conf., 12, 1 (1973).Google Scholar
  13. 13.
    D. M. Ennis & A. Kramer, J. Food. Sci., 40, 181 (1975).CrossRefGoogle Scholar
  14. 14.
    R. C. Mehta, M. S. Thesis, Univ. of Lowell, 1985, 136 pp.Google Scholar
  15. 15.
    S. J. Huang, et al., in: “Proc. 3rd. Internat. Biodegrad. Symp.”, J. M. Sharpley & A. M. Kaplan, Eds., Applied Sciences Publishers, Barking, England, 1976, p. 731.Google Scholar
  16. 16.
    W. J. Bailey, Y. Okamoto, W.-C. Kuo & T. Narita in: “Proc. 3rd. Internat. Biodegrad. Symp.,” J. M. Sharpley & A. M. Kaplan, Eds., Applied Sciences Publishers, Barking, England, 1976, p. 765.Google Scholar
  17. 17.
    D. R. Cowsar & A. C. Tanquary, U.S. Patent 4,046,086, November 20, 1977, 16 p.Google Scholar
  18. 18.
    A. C. Tanquary, D. R. Cowsar & O. R. Tarwater, J. Polym. Sci., Polym. Lett. Ed., 15, 471 (1977).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • David P. Vanderbilt
    • 1
  • James P. English
    • 2
  • Glenda L. Fleming
    • 3
  • Gerald W. McNeely
    • 4
  • Donald R. Cowsar
    • 1
  • Richard L. Dunn
    • 5
  1. 1.Southern Research InstituteBirminghamUSA
  2. 2.Birmingham Polymers, Inc.BirminghamUSA
  3. 3.University of Alabama at BirminghamBirminghamUSA
  4. 4.Hoechst Fiber IndustriesSpartanburgUSA
  5. 5.Vipont Research Laboratories, Inc.Ft. CollinsUSA

Personalised recommendations