Surface Modification of Poly(ether urethane) by Chemical Infusion and Graft Polymerization

  • Debra A. Wrobleski
  • David L. Cash
  • Robert E. Hermes


The surface of a commercially available poly(ether urethane), TecoflexR, has been modified by either chemical infusion or graft polymerization techniques. The chemical infusion technique involves the physical entrapment of polymer additives in the near surface region of the sample, while graft polymerization provides chemical attachment of a polymer to the surface of the sample. The additives investigated for chemical infusion include poly(vinylpyrrolidone) (PVP) and poly(ethylene glycol) (PEG) along with iodine and silver nitrate as antibacterial agents. Graft polymerization covalently bonds polymers to the surface of the poly(ether urethane). The polymerization is initiated by photolysis of Re2(CO)10 to generate radicals on the poly(ether urethane) surface. The monomers examined for graft polymerization include N-vinyl pyrrolidone (NVP) and 2-hydroxyethylmethacrylate (HEMA), along with sulfonate containing monomers such as sodium vinylsulfonate, 2-acrylamido-2-methyl-1-propane sulfonic acid (AMPS) and its sodium salt (NaAMPS). The surface energies of these surface modified poly(ether urethane) samples were examined by contact angle measurements in water using the Wilhelmy balance technique. An increase in surface energy was observed following surface modification by both techniques, resulting in more hydrophilic surfaces than the untreated samples.


Contact Angle Contact Angle Measurement Graft Polymerization Chemical Infusion Vinyl Monomer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Szycher, V. Poirier & J. Keiser, Trans. Am. Soc. Artif. Intern. Organs, Vol. XXIII, p. 116–124 (1977).Google Scholar
  2. 2.
    L. Vroman & E. F. Leonard, Ann. N. Y. Acad. Sci., 283, 65–76 (1977).CrossRefGoogle Scholar
  3. 3.
    B. L. Giammara, J. S. Hanker, P. E. Yates, J. Dobbins & W. C. DeVries in: “Biomedical Materials and Devices”, J. S. Hanker and B. L. Giammara, Eds., MRS Proceedings, Materials Research Society, in press.Google Scholar
  4. 4.
    D. A. Wrobleski, D. L. Cash, N. Elliott, R. Kossowsky, J. E. London, B. E. Lehnert & D. V. Duchane in: “Applied Bioactive Polymeric Systems”, C. G. Gebelein, C. E. Carraher, Jr. & V. Foster, Eds, Plenum Press, New York, 1988.Google Scholar
  5. 5.
    C. H. Bamford, I. P. Middleton, Y. Satake & K. G. Al-Lamee, Poly. Sci. Technol. (Plenum), 31 (Adv. Polym. Synth.) 291-320 (1985).Google Scholar
  6. 6.
    C. H. Bamford, E. Schofield & D. J. Micheal, Polymer, 26, 945–950 (1985).CrossRefGoogle Scholar
  7. 7.
    A. W. Neumann & R. J. Good in: “Surface and Colloid Science11, Plenum Press, New York, 1979 Chapter 2, pp. 32–43.Google Scholar
  8. 8.
    J. D. Andrade, L. M. Smith & D. E. Gregonis in: “Surface and Interfacial Aspects of Biomedical Polymers”, Volume 1, J. D. Andrade, Ed., Plenum Press, New York, 1985 pp. 249–292.CrossRefGoogle Scholar
  9. 9.
    R. C. Weast, Ed., “Handbook of Chemistry and Physics”, 60th Edition, CRC Press, Cleveland, 1978, p. E–46.Google Scholar
  10. 10.
    J. L. Azorlosa & A. J. Martinelli in: “Water-Soluble Resins”, R. L. Davidson & M. Sittig, Eds., Van Nostrand Reinhold, Co., New York, 1971, Chapter 7, p. 131.Google Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • Debra A. Wrobleski
    • 1
  • David L. Cash
    • 1
  • Robert E. Hermes
    • 1
  1. 1.Materials Science & Technology DivisionLos Alamos National LaboratoryLos AlamosUSA

Personalised recommendations