Electrophysiological Study of Recovery of Peripheral Nerves Regenerated by a Collagen-Glycosaminoglycan Copolymer Matrix

  • Albert Chang
  • Ioannis V. Yannas
  • Susanne Perutz
  • Howard Loree
  • Rajesh R. Sethi
  • Christian Krarup
  • Thorkild V. Norregaard
  • Nicholas T. Zervas
  • J. Silver


We have studied the effects of variations in the structure of a collagen-glycosaminoglycan (CG) copolymer matrix on the regeneration of transected rat sciatic nerves. Silicone tubes ensheathing 10-mm lengths of CG copolymer were grafted between the transected sciatic nerve stumps. Empty and saline-filled silicone tubes, as well as autografts, were studied as controls. The mean pore diameter and the degradation rate of the copolymer in collagenase were independently varied to investigate how each affects regeneration. Electrophysiological properties of the regenerating motor nerve fibers innervating the plantar flexor muscles, were serially monitored over about 40 weeks following surgery. Rapidly degrading CG copolymers with pore channels oriented predominantly along the axes of the tubes induced regeneration with a success rate of 100% (n = 35). Although CG copolymers with axially-oriented pore channels that degraded slowly had a success rate as high as 96% (n = 23), the long-term electrophysiological results were markedly inferior to those obtained with the rapidly degrading grafts. In another study of axially-oriented pore structures, the level of recovery of long-term electrophysiological results was observed to increase monotonously as preliminary results showed that CG copolymers with pore channels predominantly oriented along the radial direction of the tubes had a success rate of only 50% (n = 6). Control groups of empty and saline-filled tubes had an aggregated success rate of 29% (n = 21). The ongoing study has shown that systematic physiochemical manipulation of simple chemical analogs of the extracellular matrix can be used to define substrate features which encourage regeneration.


Sciatic Nerve Motor Unit Conduction Velocity Pore Channel Silicone Tube 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. Lundborg, Acta. Orthop. Scand., 58, 145–69 (1987).CrossRefGoogle Scholar
  2. 2.
    S. Varon & R. P. Bunge, Ann. Rev. Neurosci., 1, 327–61 (1978).CrossRefGoogle Scholar
  3. 3.
    R. Madison, C. F. da Silva, P. Dikkes, T.-H. Chiu & R. L. Sidman, Exp. Neurol., 88, 767–72 (1985).CrossRefGoogle Scholar
  4. 4.
    H. Müller & G. Grubel, Arch. Orthop. Traum. Surg., 102, 51–5 (1983).CrossRefGoogle Scholar
  5. 5.
    M. Ochi, Hiroshima J. Med. Sci., 31, 389–406 (1983).Google Scholar
  6. 6.
    M. J. Politis, Brain Res., 328, 271–6 (1985).CrossRefGoogle Scholar
  7. 7.
    A. Achparaki-Alvanou, A. Manthos, Ch. Kerameos-Foroglou & G. Foroglou, Acta. Neurochir. (Wien), 85, 172–82 (1987).CrossRefGoogle Scholar
  8. 8.
    W. Colin & R. B. Donoff, J. Dent. Res., 63 (7), 987–93 (1984).CrossRefGoogle Scholar
  9. 9.
    D. G. Kline & A. R. Hudson, Surg. Nerol., 24, 371–6 (1985).CrossRefGoogle Scholar
  10. 10.
    H. Molander, O. Engkvist, J. Hägglund, Y. Olsson & E. Torebjörk, Biomat., 4, 276–80 (1983).CrossRefGoogle Scholar
  11. 11.
    G. Cooper & A. L. Schiller, “Anatomy of a Guinea Pig”, Harvard University Press, Cambridge, MA. (1975).Google Scholar
  12. 12.
    I. V. Yannas, D. P. Orgill, J. Silver, T. V. Norregaard, N. T. Zervas & W. C. Schoene, Trans. Soc. Biomat., 8, 146 (1985).Google Scholar
  13. 13.
    I. V. Yannas, D. P. Orgill, J. Silver, T. Norregaard, N. T. Zervas & W. C. Schoene, Trans. Soc. Biomat., 9, 175 (1986).Google Scholar
  14. 14.
    I. V. Yannas, D. P. Orgill, J. Silver, T. V. Norregaard, N. T. Zervas & W. C. Schoene, Trans. Soc. Biomat., 10, 6 (1987).Google Scholar
  15. 15.
    I. V. Yannas, D. P. Orgill, J. Silver, T. V. Norregaard, N. T. Zervas & W. C. Schoene in “Advances in Biomedical Polymers,” C. G. Gebelein, Ed., Plenum Publishing Corp., New York, (1987).Google Scholar
  16. 16.
    G. Lundborg, L. B. Dahlin, N. Danielson, R. H. Gelberman, F. M. Longo, H. C. Powell & S. Varon, Exp. Neurol., 76, 361–375 (1982).CrossRefGoogle Scholar
  17. 17.
    I. V. Yannas, C. Krarup, A. Chang, T. V. Norregaard, N. T. Zervas & R. Sethi, Soc. Neurosci. Abs., 13 (2), 1043 (1987).Google Scholar
  18. 18.
    I. V. Yannas, A. S. Chang, C. Krarup, R. Sethi, T. V. Norregaard, & N. T. Zervas, Soc. Neurosci. Abs., 14, 165 (1988).Google Scholar
  19. 19.
    I. V. Yannas, J. F. Burke, P. L. Gordon, C. Huang & R. H. Rubenstein, J. Biomed. Mater. Res., 14, 107–131 (1980).CrossRefGoogle Scholar
  20. 20.
    T. Weiss, “Laboratory Notes on Quantitative Physiology: Cells and Tissues,” Department of Electrical Engineering, MIT (1982).Google Scholar
  21. 21.
    H. Loree, S. M. Thesis, MIT (1988).Google Scholar
  22. 22.
    A. Chang, S. M. Thesis, MIT (1988).Google Scholar
  23. 23.
    I. V. Yannas, E. Lee, D. P. Orgill, E. M. Skrabut & G. F. Murphy, Proc. Natl. Acad. Sci. USA, 86, 933–937 (1989).CrossRefGoogle Scholar
  24. 24.
    H. Ashur, Y. Vilner, A. Finsterbush, M. Rousso, H. Weinberg & M. Devor, Exp. Neurol., 97, 365–74 (1987).CrossRefGoogle Scholar
  25. 25.
    R. D. Fields & M. H. Ellisman, Exp. Neurol., 92, 48–60 (1986).CrossRefGoogle Scholar
  26. 26.
    H. Müller, K. Shibib, H. Friedrich & M. Modrack, Exp. Neurol., 95, 21–33 (1987).CrossRefGoogle Scholar
  27. 27.
    L. R. Williams, F. M. Longo, H. C. Powell, G. Lundborg & S. Varon, J. Comp. Neurol., 218, 460–70 (1983).CrossRefGoogle Scholar
  28. 28.
    G. Carmignoto, M. Finesso, R. Siliprandi & A. Gorio, Neurosci., 8 (3), 393–401 (1983).CrossRefGoogle Scholar
  29. 29.
    A. Gorio, G. Carmignoto, M. Finesso, P. Polato & M. G. Nunzi, Neurosci., 8 (3), 403–16 (1983).CrossRefGoogle Scholar
  30. 30.
    R. D. Fields & M. H. Ellisman, Exp. Neurol., 92, 61–74 (1986).CrossRefGoogle Scholar
  31. 31.
    J. Bard & T. Elsdale, Cell Tissue Kinetics, 19, 141–54 (1986).Google Scholar
  32. 32.
    A. S. G. Curtis & J. V. Forrester in: “Matrices and Cell Differentiation,” Alan Liss, Ed., New York, 339-43 (1984).Google Scholar
  33. 33.
    G. E. Davis, S. N. Blaker, E. Engvall, S. Varon, M. Manthorpe & F. H. Gage, Science, 236, 1106–9 (1987).CrossRefGoogle Scholar
  34. 34.
    R. J. Keynes, W. G. Hopkins & C. L. Huang, Brain Res., 295, 275–81 (1984).CrossRefGoogle Scholar
  35. 35.
    F, M, Longo, M. Manthorpe, S. D. Skaper, G. Lundborg & S. Varon, Brain Res., 261, 109–17 (1983).CrossRefGoogle Scholar
  36. 36.
    F. M. Longo, S. D. Skaper, M. Manthorpe, L. R. Williams, G. Lundborg & S. Varon, Exp. Neurol., 81, 756–69 (1983).CrossRefGoogle Scholar
  37. 37.
    I. Vlodavsky, J. Folkman, R. Sullivan, R. Fridman, R. Ishai-Michaeli, J. Sasse & M. Klagsbrun, Proc. Nat. Acad., Sci. USA, 84, 2292–6 (1987).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • Albert Chang
    • 1
  • Ioannis V. Yannas
    • 1
  • Susanne Perutz
    • 1
  • Howard Loree
    • 1
  • Rajesh R. Sethi
    • 2
  • Christian Krarup
    • 2
  • Thorkild V. Norregaard
    • 3
  • Nicholas T. Zervas
    • 4
  • J. Silver
    • 5
  1. 1.Massachusetts Institute of TechnologyCambridgeUSA
  2. 2.Brigham and Women’s HospitalBostonUSA
  3. 3.Deaconess HospitalBostonUSA
  4. 4.Massachusetts General HospitalBostonUSA
  5. 5.Case Western Reserve UniversityClevelandUSA

Personalised recommendations