Advertisement

Satellite Ocean Color Observations of Global Biogeochemical Cycles

  • Marlon R. Lewis
Part of the Environmental Science Research book series (ESRH, volume 43)

Abstract

Variability in the optical properties of the upper ocean influences the color of the ocean as seen from space. For most of the ocean, the optical properties are controlled by the concentration of biogenic particles and dissolved matter — phytoplankton, bacteria, and their degradation products. Variations in the optical properties modify the spectral and geometrical distribution of the underwater light field, and thereby alter the color of the sea. Biologically rich and productive waters are characterized by green water; the relatively depauperate open ocean regions are blue.

Keywords

Surface Heat Flux Atmospheric Correction Ocean Color Total Inorganic Carbon Redfield Ratio 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abbott, M. R., and Chelton, D. B., 1991, Advances in passive remote sensing of the ocean, Rev. Geophysics, in press.Google Scholar
  2. Abbott, M. R., and Zion, P. M., 1987, Spatial and temporal variability of phytoplankton pigment off northern California during Coastal Ocean Dynamics Experiment 1, J. Geophys. Res., 92:1745.CrossRefGoogle Scholar
  3. Andre, J. M., and Morel, A., 1989, Simulated effects of barometric pressure and ozone content upon the estimate of marine phytoplankton from space, J. Geophys. Res., 94:1029.CrossRefGoogle Scholar
  4. Andre, J. M., and Morel, A., 1991, Atmospheric corrections and interpretation of marine radiances in CZCS imagery, revisited, Oceanol. Acta., 14:3.Google Scholar
  5. Baker, D. J., 1990, Planet Earth: The view from space, Harvard University Press, Cambridge, Massachusettes.Google Scholar
  6. Balch, W. M., Abbott, M. R., and Eppley, R. W., 1989a, Remote sensing of primary production — I. A comparison of empirical and semi-analytical algorithms, Deep Sea Res., 36:281.CrossRefGoogle Scholar
  7. Balch, W. M., Eppley, R. W., Abbott, M. R., and Reid, R. M. H., 1989b, Bias in satellite-derived pigment measurements due to coccolithophores and dinoflagellates, J. Plankton Res., 11:575.CrossRefGoogle Scholar
  8. Balch, W. M., Evans, R., and Brown, J., 1991, The remote sensing of ocean primary productivity — use of a new data compilation to test satellite algorithms, J. Geophys. Res., in press.Google Scholar
  9. Banse, K., and Yong, M., 1990, Sources of variability in satellite-derived estimates of phytoplankton production in the eastern tropical Pacific, J. Geophys. Res., 95:7201.CrossRefGoogle Scholar
  10. Bates, T. S., Charlson, R. J., and Gammon, R. H., 1987, Evidence for the climatic role of marine biogenic sulphur, Nature, 329:319.CrossRefGoogle Scholar
  11. Bidigare, R. R., this volume.Google Scholar
  12. Bricaud, A., and Morel, A., 1987, Atmospheric corrections and interpretation of marine radiances in CZCS imagery: use of a reflectance model, Oceanol. Acta 7:33.Google Scholar
  13. Brown, O. B., Evans, R. H., Brown, J. W., Gordon, H. R., Smith, R. C., and Baker, K. S., 1985, Phytoplankton blooming off the U.S. East coast: A satellite description, Science, 229:163.PubMedCrossRefGoogle Scholar
  14. Carder, K. L., and Steward, R. G., 1985, A remote-sensing reflectance model of a red-tide dinoflagellate off West Florida, Limnol. Oceanogr., 30:286.CrossRefGoogle Scholar
  15. Carder, K. L., Steward, R. G., Harvey, G. R., and Ortner, P. B., 1989, Marine humic and fulvic acids: Their effects on remote sensing of ocean chlorophyll, Limnol. Oceanogr., 34:68.CrossRefGoogle Scholar
  16. Charlson, J. E. Lovelock, Andreae, M. O., and Warren, S. G., 1987, Oceanic phytoplankton, atmospheric sulphur, cloud albedo and climate, Nature, 326:655.CrossRefGoogle Scholar
  17. Clarke, G. L., Ewing, G. C., and Lorenzen, C. J., 1970, Spectra of backscattered light from the sea obtained from aircraft as a measure of chlorophyll concentration, Science, 167:1119.PubMedCrossRefGoogle Scholar
  18. Denman, K. L., 1973, A time-dependent model of the upper ocean, J. Phys. Oceanogr., 3:173.CrossRefGoogle Scholar
  19. Dugdale, R. C., and Goering, J. J., 1967, Uptake of new and regenerated forms of nitrogen in primary productivity, Limnol. Oceanogr., 12:196.CrossRefGoogle Scholar
  20. Dugdale, R. C., Morel, A., Bricaud, A., and Wilkerson, F. P., 1989, Modeling new production in upwelling centers: A case study of modeling new production from remotely sensed temperaure and color, J. Geophys. Res., 94:18119.CrossRefGoogle Scholar
  21. Eppley, R. W., and Peterson, B. J., 1979, Particulate organic matter flux and planktonic new production in the deep ocean, Nature, 282:677.CrossRefGoogle Scholar
  22. Eppley, R. W., Stewart, E., Abbott, M. R., and Heyman, U., 1985, Estimated ocean primary production from satellite chlorophyll, Introduction to regional differences and statistics for the Southern California Bight, J. Plankton Res., 7:57.CrossRefGoogle Scholar
  23. Esaias, W. E., 1981, Remote sensing in biological oceanography, Oceanus, 24:33.Google Scholar
  24. Eslinger, D. L., O’Brien, J. J., and Iverson, R. L., 1989, Empirical orthogonal function analysis of cloud-containing Coastal Zone Color Scanner images of northeastern North American coastal waters, J. Geophys. Res., 94:10884.CrossRefGoogle Scholar
  25. Evans, R. H., Baker, K. S., Brown, O. B., and Smith, R. C., 1985, Chronology of Warm-Core ring 82B, J. Geophys. Res., 90:8803.CrossRefGoogle Scholar
  26. Feldman, G. C., Clark, D., and Halpern, D., 1984, Satellite color observations of the phytoplankton distribution in the Eastern Equatorial Pacific during the 1982–1983 El Nino, Science, 226:1069.PubMedCrossRefGoogle Scholar
  27. Feldman, G. C., Kuring, N., Ng, C., Esaias, W., McClain, C., Elrod, J., Maynard, N., Endres, D., Evans, R., Brown, J., Walsh, S., Carle, M., and Podesta, G., 1989, Ocean Color: Availability of the global data set, EOS, 70:634.CrossRefGoogle Scholar
  28. Gordon, H. R., 1978, Removal of atmospheric effects from satellite imagery of the oceans, Appl. Opt., 17:1631.PubMedCrossRefGoogle Scholar
  29. Gordon, H. R., Brown, J. W., Evans, R. H., 1989, Exact Rayleigh scattering calculations for use with the Nimbus-7 Coastal Zone Color Scanner, Appl. Optics, 27:862.CrossRefGoogle Scholar
  30. Gordon, H. R., Brown, O. B., Evans, R. H., Brown, J. W., Smith, R. C., Baker, K. S., and Clark, D. K., 1988, A semianalytic radiance model of ocean color, J. Geophys. Res., 93:10909.CrossRefGoogle Scholar
  31. Gordon, H. R., and Castano, D. J., 1987, Coastal Zone Color Scanner atmospheric correction algorithm: multiple scattering effects, Appl. Optics, 26:2111.CrossRefGoogle Scholar
  32. Gordon, H. R., and Castano, D. J., 1989, Aerosol analysis with the Coastal Zone Color Scanner: A simple method for including multiple scattering effects, Appl. Optics, 28:1320.CrossRefGoogle Scholar
  33. Gordon, H. R., and Clark, D. K., 1981, Clear-water radiances for atmospheric correction of Coastal Zone Color Scanner imagery, Appl. Opt., 20:4175.PubMedCrossRefGoogle Scholar
  34. Gordon, H. R., Clark, D. K., Mueller, J. L., and Hovis, W. A., 1980, Phytoplankton pigments derived from the Nimbus-7 CZCS: Initial comparisons with surface measurements, Science, 210:63.PubMedCrossRefGoogle Scholar
  35. Gordon, H. R., and Morel, A., 1983, Remote Assessment of Ocean Color for Interpretation of Satellite Visible Imagery: A Review, Springer-Verlag, New York.CrossRefGoogle Scholar
  36. Kuring, N., Lewis, M. R., Platt, T., and O’Reilly, J. F., 1990, Satellite-derived estimates of primary production in the Northwestern Atlantic, Cont. Shelf Res., 10:461.CrossRefGoogle Scholar
  37. Lewis, M.R., 1987, Phytoplankton and thermal structure in the tropical ocean, Oceanolgica Acta, SP:91.Google Scholar
  38. Lewis, M. R., 1989, The variegated ocean: A view from space, New Scientist, 1685.Google Scholar
  39. Lewis, M. R., Carr, M. E., Feldman, G. C., Esaias, W., and McClain, C., 1990, Influence of penetrating solar radiation on the heat budget of the equatorial Pacific Ocean, Nature, 347:543.CrossRefGoogle Scholar
  40. Lewis, M. R., Cullen, J. J., and Platt, T., 1983, Phytoplankton and thermal structure in the upper ocean: Consequences of nonuniformity in chlorophyll profile, J. Geophys. Res., 88:2565.CrossRefGoogle Scholar
  41. Lewis, M. R., Harrison, W. G., Oakey, N. S., Hebert, D., and Platt, T., 1986, Vertical nitrate fluxes in the oligotrophic ocean, Science, 234:870.PubMedCrossRefGoogle Scholar
  42. Lewis, M. R., Kuring, N., and Yentsch, C. S., 1988, Global patterns of ocean transparency, Implications for the new production of the open ocean, J. Geophys. Res., 93:6847.CrossRefGoogle Scholar
  43. Lewis, M. R. and Platt, T., 1987, Remote observation of ocean colour for prediction of upper ocean heating rates, Adv. Space Res., 7:6.CrossRefGoogle Scholar
  44. Liu, W. T., 1988, Moisture and latent heat flux variabilities in the tropical Pacific derived from satellite data, J. Geophys. Res., 93:6749.CrossRefGoogle Scholar
  45. Liu, W. T., and Gautier, C., 1990, Thermal forcing on the tropical Pacific from satellite data, J. Geophys. Res., 95:13209.CrossRefGoogle Scholar
  46. Liu, W. T., and Niiler, P. P., 1984, Determination of monthly mean humidity in the atmospheric surface layer over oceans from satellite data, J. Phys. Oceanogr., 14:1451.CrossRefGoogle Scholar
  47. McClain, C. R., Esaias, W. E., Feldman, G. C., Elrod, J., Endres, D., Firestone, J., Darzi, M., Evans, R., and Brown, J., 1990, Physical and biological processes in the north Atlantic during the First GARP Global Experiment, J. Geophys. Res., 95:18027.CrossRefGoogle Scholar
  48. Mitchell, B. G., Esaias, W. E., Feldman, G., Kirk, R. G., McClain, C. R., and Lewis, M.R., Satellite ocean color data for studying oceanic biogeochemical cycles, IEEE Pub., in press.Google Scholar
  49. Morel, A., 1978, Available, usable, and stored radiant energy in relation to marine photosynthesis, Deep Sea Res., 25:673.CrossRefGoogle Scholar
  50. Morel, A., 1988, Optical modelling of the upper ocean in relations to its biogenous matter content (Case I waters), J. Geophys. Res., 93:10749.CrossRefGoogle Scholar
  51. Morel, A., 1991, Light and marine photosynthesis: a spectral model with geochemical and climatological implications, Prog. Oceanogr., 26:263.CrossRefGoogle Scholar
  52. Morel, A., and Berthon, J.-F., 1989, Surface pigments, algal biomass profiles and potential production of the euphotic layer: Relationships reinvestigated in view of remote-sensing applications, Limnol. Oceanogr., 34:1545.CrossRefGoogle Scholar
  53. Mueller, J. L., and Lange, R. E., 1989, Bio-optical provinces of the Northeast Pacific Ocean: A provisional analysis, Limnol. Oceanogr., 34:1572.CrossRefGoogle Scholar
  54. Perry, M. J., 1986, Assessing marine primary production from space, BioScience, 36:461.CrossRefGoogle Scholar
  55. Platt, T., 1986, Primary production of the ocean water column as a function of surface light intensity: algorithms for remote sensing, Deep Sea Res., 33:149.CrossRefGoogle Scholar
  56. Platt, T., and Lewis, M. R., 1987, Estimation of phytoplankton production by remote sensing, Adv. Space Res., 7:10.CrossRefGoogle Scholar
  57. Platt, T., and Sathyendranath, S., 1989, Oceanic primary production: estimation by remote sensing at regional and larger scales, Science, 241:1613.CrossRefGoogle Scholar
  58. Platt, T., Sathyendranath, S., Caverhill, C. M., and Lewis, M. R., 1988, Oceanic primary production and available light: further algorithms for remote sensing, Deep Sea Res., 35:855.CrossRefGoogle Scholar
  59. Sarmiento, J. L., and Toggweiler, R. R., 1984, A new model for the role of the oceans in determining atmospheric pCO2, Nature, 308:621.CrossRefGoogle Scholar
  60. Sathyendranath, S., Platt, T., Home, E. P. W., et al., 1991, Estimation of new production in the ocean by compound remote sensing, Nature, 353:129.CrossRefGoogle Scholar
  61. Smith, R. C., Eppley, R. W., Baker, K. S., 1982, Correlation of primary production as measured aboard ship on Southern California coastal waters and as estimated “from” satellite chlorophyll images, Mar. Biol., 66:281.CrossRefGoogle Scholar
  62. Smith, R. C., and Wilson, W. H., 1981, Ship and satellite bio-optical research in the California Bight., In: “Oceanography from Space,” J. Gower, ed., Plenum, New York.Google Scholar
  63. Smith, R. C., Prezelin, B. B., Bidigare, R. R., and Baker, K. S., 1989, Bio-optical modelling of photosynthetic production in coastal waters, Limnol. Oceanogr., 34:1524.CrossRefGoogle Scholar
  64. Violler, M., Tanre, D., and Deschamps, P. Y., 1980, An algorithm for remote sensing of water color from space, Boundary-Layer Meterol., 18:247.CrossRefGoogle Scholar
  65. Watson, A. J., Robinson, C., Robinson, J. E., Williams, P. J. leB., and Fasham, M. J. R., 1991, Spatial variability in the sink for atmospheric carbon dioxide in the North Atlantic, Nature, 350:50.CrossRefGoogle Scholar
  66. Woods, J. D., Barkman, W., and Horch, A., 1984, Solar heating of the oceans — diurnal, seasonal, and meridional variation, Quart. J.R. Meterol. Soc., 110:633.Google Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • Marlon R. Lewis
    • 1
  1. 1.Department of OceanographyDalhousie UniversityHalifaxCanada

Personalised recommendations