Iron as a Limiting Factor in Oceanic Productivity

  • John H. Martin
Part of the Environmental Science Research book series (ESRH, volume 43)


Iron has been hypothesized to be a factor limiting phytoplankton standing crop in the ocean for decades. For example, in 1931, Gran suggested that, “If the productivity of the coastal waters is dependent on any factor of a chemical nature acting as a minimum factor, it must be an element which in its circulation does not follow the nitrates and phosphates accumulating in solution in the deep sea and reaching the surface again by vertical circulation of any kind. If such minimum stuffs exist, they must irreversibly go out of circulation in the sea, so that they can only be renewed from the land.” Based on growth in culture solution, Gran (1931, p.41) concluded that lack or low concentration of iron probably limited plant growth at times and in areas of the sea where it was not replenished by land drainage. Previous data, and those obtained by Braarud & Klem (1931) off the Norwegian coast at his instigation, showed the iron content of sea water to be very small, ranging from 3 to 21 mg. Fe per m3 (Harvey, 1938, p.205)


Southern Ocean Particulate Organic Carbon Dust Event Drake Passage Atmospheric Dust 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson, G. C., and Morel, F. M. M., 1982, The influence of aqueous iron chemistry on the uptake of iron by the coastal diatom Thalassiosira weissflogii, Limnol. Oceanogr., 27:789.CrossRefGoogle Scholar
  2. Barber, R. T., and Chavez, F. P., 1991, Regulation of primary productivity rate in the equatorial Pacific Ocean, in: “What Controls Phytoplankton Production in Nutrient-rich Areas of the Open Sea?”, ASLO Symposium, Lake San Marcos, California, February 22–24, 1991, S.W. Chisholm and F.M.M. Morel, eds., Allen Press, Lawrence, in press.Google Scholar
  3. Barnard, W.R., Andreae, M. O., and Iverson, R. L., 1984, Dimethyl sulphide and Phaeocystis pouchetii in the southeastern Bering Sea, Cont. Shelf Res., 3:103.CrossRefGoogle Scholar
  4. Barnola, J. M., Raynaud, D., Korotkevich, Y. S., and Lorius, C., 1987, Vostok ice core provides 160,000 year record of atmospheric CO2, Nature, 329:408.CrossRefGoogle Scholar
  5. Berger, W. H., 1991, No change down under, Nature, 351:186.CrossRefGoogle Scholar
  6. Braarud, T., and Klem, A., 1931, Hydrological and chemical investigations in the sea off More. Skr. Uttgift av Hvalradets ved Univ. Biol. Lab. Oslo, No. 1.Google Scholar
  7. Byrne, R. H., and Kester, D. R., 1975, Solubility of hydrous ferric oxide and iron speciation in seawater, Mar. Chem., 4:255.CrossRefGoogle Scholar
  8. Chavez, F. P., Buck, K.R., and Barber, R. T., 1990, Phytoplankton taxa in relation to primary production in the equatorial Pacific, Deep-Sea Res., 37:1733.CrossRefGoogle Scholar
  9. Coale, K. H., 1991, Effects of iron, managnese, copper and zinc enrichments on productivity and biomass in the subarctic Pacific, in: “What Controls Phytoplankton Production in Nutrient-rich Areas of the Open Sea?”, ASLO Symposium, Lake San Marcos, California, February 22–24, 1991, S.W. Chisholm and F.M.M. Morel, eds., Allen Press, Lawrence, in press.Google Scholar
  10. Crocker, K., Ondrescek, M., and Petty, R., 1991, Dimethylsulphide production from a Phaeocystis bloom in the Bellingshausen Sea, Antarctica. Abstract, in press.Google Scholar
  11. de Baar, H. J. W., Buma, A. G. J., Nolting, R. F., Cadee, G. C., Jaques, G., and Treguer, 1990, On iron limitation in the Southern Ocean: experimental observations in the Weddell and Scotia Seas, Mar. Ecol. Prog. Ser., 65:105.CrossRefGoogle Scholar
  12. De Angelis, M., Barkov, N. I., and Petrov, V.N., 1987, Aerosol concentrations over the last climatic cycle (160 kyr) from an Antarctic ice core, Nature, 325:318.CrossRefGoogle Scholar
  13. DiTullio, G. R., and Laws, E. A., 1991, Impact of an atmospheric-oceanic disturbance on phytoplankton community dynamics in the north Pacific central gyre, Deep-Sea Res., (in press).Google Scholar
  14. Duce, R. A., 1986, The impact of atmospheric nitrogen, phosphorus, and iron species on marine biological productivity, in: “The Role of Air-sea Exchange in Geochemical Cycling,” P. Buat-Menard, ed., D. Reidel Publishing Company, Dordrecht.Google Scholar
  15. Dunbar, R. B., Leventer, A. R., and Stockton, W. L., 1989, Biogenic sedimentation in McMurdo Sound, Antarctica, Mar Geol., 85:155.CrossRefGoogle Scholar
  16. Elrod, V. A., Johnson, K.S., and Coale, K. H., 1991, Determination of subnanomolar levels of iron(II) and total dissolved iron in seawater by flow injection analysis with chemiluminescence detection, Anal. Chem., 63:893.CrossRefGoogle Scholar
  17. El-Sayed, S. Z., 1988, Productivity of the Southern Ocean: A closer look, Compar. Biochem. Physiol., 90B:489.Google Scholar
  18. Feldman, G. C., 1986, Patterns of phytoplankton production around the Galapagos Islands, in: “Tidal Mixing and Plankton Dynamics; Lecture Notes on Coastal and Estraurine Studies, Vol. 17, J. Bowman, M. Yentsch, and W.T. Peterson, eds., Springer-Verlag, Berlin.Google Scholar
  19. Gran, H. H., 1931, On the conditions for the production of plankton in the sea, Rapp. Proc. Verb. Cons. Int. Explor. Mer., 75:37.Google Scholar
  20. Hart, T. J., 1934, On the phytoplankton of the south-west Atlantic and the Bellingshausen Sea, 1929–31, Discovery Reports, Vol. VIII.Google Scholar
  21. Harvey, H. W., 1938, The supply of iron to diatoms. J. Mar. Biol. Assoc., U.K., 22:205.Google Scholar
  22. Helbling, E. W., Villafane, V., and Holm-Hansen, O., 1991, Effect of Fe on productivity and size distribution of Antarctic phytoplankton, in: “What Controls Phytoplankton Production in Nutrient-rich Areas of the Open Sea?”, ASLO Symposium, Lake San Marcos, California, February 22–24, 1991, S.W. Chisholm and F.M.M. Morel, eds., Allen Press, Lawrence, in press.Google Scholar
  23. Hudson, J. M., and Morel, F. M. M., 1990, Iron transport in marine phytoplankton: Kinetics of cellular and medium coordination reactions, Limnol. Oceanogr., 35:1002.CrossRefGoogle Scholar
  24. Knox, F., and McElroy, M. B., 1984, Changes in atmospheric carbon dioxide: Influence of the marine biota at high latitude, J. Geophys. Res., 89:4629.CrossRefGoogle Scholar
  25. Legrand, M., Feniet-Saigne, C., Saltzman, E. S., Germain, C., Barkov, N.I., and Petrov, V.N., 1991, Ice-core record of oceanic emissions of dimethylsulphide during the last climate cycle, Nature, 350:144.CrossRefGoogle Scholar
  26. Lloyd, P., 1991, Iron determinations, Nature, 350:19.CrossRefGoogle Scholar
  27. Martin, J. H., 1990, Glacial-Interglacial CO2 change: The iron hypothesis, Paleoceanogr, 5:1.CrossRefGoogle Scholar
  28. Martin, J. H., and Gordon, R. M., 1988, Northeast Pacific iron distributions in relation to phytoplankton productivity, Deep-Sea Res., 35:177.CrossRefGoogle Scholar
  29. Martin, J. H., Gordon, R. M., Fitzwater, S., and Broenkow, W. W., 1989, VERTEX: Phytoplankton/iron studies in the Gulf of Alaska, Deep-Sea Res., 36:649.CrossRefGoogle Scholar
  30. Martin, J. H., Gordon, R. M., and Fitzwater, S.E., 1990, Iron in Antarctic waters, Nature, 345:156.CrossRefGoogle Scholar
  31. Martin, J. H., Gordon, R. M., and Fitzwater, S. E., 1991, The case for iron, in: “What Controls Phytoplankton Production in Nutrient-rich Areas of the Open Sea?”, ASLO Symposium, Lake San Marcos, California, February 22–24, 1991, S.W. Chisholm and F.M.M. Morel, eds., Allen Press, Lawrence, in press.Google Scholar
  32. McTaggert, A., 1991, The biogeochemistry of dimethylsulphide in Antarctic coastal seawater, Abstract, this volume.Google Scholar
  33. Minas, H. J., Coste, B., Minas, M., and Raimbault, P., 1990, Conditions hydrologiques, chimiques et production primaire dans les upwellings du Perou et des iles Galapagos, en regime d’hiver austral (campagne Paciprod), Oceanologia Acta, 10:383.Google Scholar
  34. Morel, F. M. M., and Hudson, R. J. M., 1985, The cycle of trace elements in aquatic systems: Redfield revisited, in: “Chemical Processes in Lakes,” W. Stumm, ed., Wiley, New York.Google Scholar
  35. Mortlock, R. A., Charles, C. D., Froelich, P. N., Zibello, M. A., Saltzman, J., Hays, J.D., and Burckle, L. H., 1991, Evidence for lower productivity in the Antarctic Ocean during the last glaciation, Nature, 351:220.CrossRefGoogle Scholar
  36. Nelson, D. M., and Smith, W. O., Jr., 1986, Phytoplankton bloom dynamics of the western Ross Sea ice edge — II. Mesoscale cycling of nitrogen and silicon, Deep-Sea Res., 33:1389.CrossRefGoogle Scholar
  37. Petit, J. R., Briat, M., and Royer, A., 1981, Ice age aerosol content from East Antarctic ice core samples and past wind strength, Nature, 293:391.CrossRefGoogle Scholar
  38. Price, N. M., Andersen, L.F., and Morel, F. M. M., 1991, Iron and nitrogen nutrition of equatorial Pacific plankton, Deep-Sea Res., (in press).Google Scholar
  39. Prospero, J. M., 1981, Eolian transport to the world ocean, in: “The Sea,” Vol. 7, C. Emiliani, ed., Wiley, N.Y.Google Scholar
  40. Raven, J. A., 1988, The iron and molybdenum use efficiencies of plant growth with different energy, carbon and nitrogen sources, New Phytol., 109:279.CrossRefGoogle Scholar
  41. Sarmiento, J. L., 1991, Slowing the buildup of fossil CO2 in the atmosphere by iron fertilization: A comment, Global Biogeochem. Cycles, 5:1.CrossRefGoogle Scholar
  42. Sarmiento, J. L., and Toggweiler, L. R., 1984, A new model for the role of the oceans in determining atmospheric carbon dioxide levels, Nature, 308:621.CrossRefGoogle Scholar
  43. Sarnthein, M., 1978, Sand deserts during glacial maximum and climatic optimum, Nature, 272:43.CrossRefGoogle Scholar
  44. Siegenthaler, U., and Wenk, T. H., 1984, Rapid atmospheric CO2 variations and ocean circulation, Nature, 308:624.CrossRefGoogle Scholar
  45. Sunda, W. G., Swift, D. G., and Huntsman, S. A., 1991, Low iron requirement in oceanic phytoplankton, Nature, 351:55.CrossRefGoogle Scholar
  46. Uematsu, M., 1987, Study of the continental material transported through the atmosphere to the ocean, J. Oceanogr. Soc. Japan, 43:395.CrossRefGoogle Scholar
  47. Uematsu, M., Duce, R. A., Prospero, J. M., Chen, L., Merrill, J. T., and McDonald, R. L., 1983, Transport of mineral aerosol from Asia over the North Pacific Ocean, J. Geophys. Res., 88:5343.CrossRefGoogle Scholar
  48. Wanninkhof, R., Ledwell, J. R., and Watson, A. J., 1991, Analysis of sulphur hexaflouride in seawater, J. Geophys. Res., 96:8733.CrossRefGoogle Scholar
  49. Wassmann, P., Vernet, M., Mitchell, B. G., and Rey, F., 1990, Mass sedimentation of Phaeocystis pouchetii in the Barents Sea, Mar. Ecol. Prog. Series, 66:183.CrossRefGoogle Scholar
  50. Young, R. W., Carder, K. L., Betzer, P. R., Costello, D. K., Duce, R. A., DiTullio, G. R., Tindale, N. W., Laws, E. A., Uematsu, M., Merrill, J. T., and Feely, R. A., 1991, Atmospheric iron inputs and primary productivity: Phytoplankton responses in the north Pacific, Global Biogeochem. Cycles (in press).Google Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • John H. Martin
    • 1
  1. 1.Moss Landing Marine LaboratoriesMoss LandingUSA

Personalised recommendations