Nutrient Limitation of Marine Photosynthesis

  • John J. Cullen
  • Xiaolong Yang
  • Hugh L. MacIntyre
Part of the Environmental Science Research book series (ESRH, volume 43)


Guided by insightful presentations at the previous Brookhaven Symposium (Bannister and Laws, 1980; Eppley, 1980; Goldman, 1980) we address here three questions that have challenged oceanographers for decades: 1) Can photosynthetic performance be used to diagnose the nutritional status of phytoplankton? 2) Should nutrients be incorporated into models of oceanic photosynthesis as a function of chlorophyll and light? and 3) How might we assess nutrient limitation of the specific growth rates or standing crop of phytoplankton in the ocean? We find that ambiguities thwart attempts to formulate robust generalizations. Accordingly, when it comes to nutrient limitation of marine photosynthesis, a good paradigm is hard to find.


Specific Growth Rate Relative Growth Rate Standing Crop Nutrient Limitation Nitrogen Limitation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Balch, W. M., Abbott, M. R., and Eppley, R. W., 1989, Remote sensing of primary production — I. A comparison of empirical and semi-analytical algorithms, Deep-Sea Res., 36:281.CrossRefGoogle Scholar
  2. Bannister, T. T., and Laws, E. A., 1980, Modeling phytoplankton carbon metabolism, in: “Primary Productivity in the Sea,” P. G. Falkowski, ed., Plenum Press, New York.Google Scholar
  3. Banse, K., 1990, Does iron really limit phytoplankton production in the offshore subarctic Pacific?, Limnol. Oceanogr., 35:772.CrossRefGoogle Scholar
  4. Banse, K., 1991, Rates of phytoplankton growth, Limnol. Oceanogr., Spec. Symp. Vol.: (in press).Google Scholar
  5. Barber, R. T., and Chavez, F. P., 1991, Regulation of primary productivity rate in the equatorial Pacific Ocean, Limnol. Oceanogr., Spec. Symp. Vol.: (in press).Google Scholar
  6. Blackman, F. F., 1905, Optima and limiting factors, Ann. Bot., 19:281.Google Scholar
  7. Brand, L. E., Sunda, W. G., and Guillard, R. R. L., 1983, Limitation of marine phytoplankton reproductive rates by zinc, manganese, and iron, Limnol. Oceanogr., 28:1182.CrossRefGoogle Scholar
  8. Browne, C.A., 1942, Liebig and the law of the minimum, in: “Liebig and after Liebig: A Century of Papers in Agricultural Chemistry,” F.R. Moulton, ed., AAAS, Washington, D.C.Google Scholar
  9. Bruland, K., et. al., 1991, Interactive influences of bioactive trace metals on biological production in the ocean, Limnol. Oceanogr., Spec. Symp. Vol.: (in press).Google Scholar
  10. Campbell, J. W., and O’Reilly, J. E., 1988, Role of satellites in estimating primary productivity on the northwest Atlantic continental shelf, Cont. Shelf Res., 8:179.CrossRefGoogle Scholar
  11. Chalup, M. S., and Laws, E. A., 1990, A test of the assumptions and predictions of recent microalgal growth models with the marine phytoplankter Pavlova lutheri, Limnol. Oceanogr., 35:583.CrossRefGoogle Scholar
  12. Chisholm, S. W., and Morel, F. M. M., 1991, What controls phytoplankton production in nutrient-rich areas of the open sea?, Limnol Oceanogr., Spec. Symp. Vol.: (in press).Google Scholar
  13. Cleveland, J. S., and Perry, M. J., 1987, Quantum yield, relative specific absorption and fluorescence in nitrogen-limited Chaetoceros gracilis, Mar. Biol., 94:489.CrossRefGoogle Scholar
  14. Cullen, J. J., and Lewis, M.R., 1988, The kinetics of algal photoadaptation in the context of vertical mixing, J. Plankton Res., 10:1039.CrossRefGoogle Scholar
  15. Cullen, J. J., 1990, On models of growth and photosynthesis in phytoplankton, Deep-Sea Res., 37:667.CrossRefGoogle Scholar
  16. Cullen, J. J., 1991, Hypotheses to explain high-nutrient conditions in the open sea, Limnol. Oceanogr., Spec. Symp. Vol.: (in press).Google Scholar
  17. Cullen, J. J., Lewis, M. R., Davis, C. O., and Barber, R. T., 1991, Photosynthetic characteristics and estimated growth rates indicate grazing is the proximate control of primary production in the equatorial Pacific, J. Geophys. Res., (in press).Google Scholar
  18. Curl, H., and Small, L. R., 1965, Variations in photosynthetic assimilation ratios in natural phytoplankton communities, Limnol. Oceanogr., 10:R67.CrossRefGoogle Scholar
  19. Dubinsky, Z., this volume.Google Scholar
  20. Eppley, R. W., 1972, Temperature and phytoplankton growth in the sea, Fish. Bull., 70:1063.Google Scholar
  21. Eppley, R. W., 1980, Estimating phytoplankton growth rates in the central oligotrophic oceans, in: “Primary Productivity in the Sea,” P. G. Falkowski, ed., Plenum Press, New York.Google Scholar
  22. Eppley, R. W., 1981, Relationship between nutrient assimilation and growth rate in phytoplankton with a brief view of estimates growth rate in the ocean., in: “Physiological Bases of Phytoplankton Ecology,” T. Platt, ed., Ottawa.Google Scholar
  23. Eppley, R. W., and Renger, E. H., 1974, Nitrogen assimilation of an oceanic diatom in nitrogen-limited continuous culture, J. Phycol., 10:15.Google Scholar
  24. Falkowski, P. G., 1980, Light-shade adaptation in marine phytoplankton, in: “Primary Productivity in the Sea,” P. G. Falkowski, ed., Plenum Press, New York.CrossRefGoogle Scholar
  25. Falkowski, P. G., 1981, Light-shade adaptation and assimilation numbers, J. Plankton Res., 3:203.CrossRefGoogle Scholar
  26. Falkowski, P. G., 1983, Light-shade adaptation and vertical mixing of marine phytoplankton: A comparative field study, J. Mar. Res., 41:215.CrossRefGoogle Scholar
  27. Falkowski, P. G., 1991, Molecular ecology of phytoplankton photosynthesis, in: “Primary Productivity and biogeochemical Cycles in the Sea,” P.G. Falkowski and A. Woodhead, eds., Plenum, New York.Google Scholar
  28. Flynn, K. J., 1990, The determination of nitrogen status in microalgae, Mar. Ecol. Prog. Ser., 61:297.CrossRefGoogle Scholar
  29. Gallagher, J. C., 1982, Physiological variation and electrophoretic banding patterns of genetically different seasonal populations of Skeletonema costatum (Bacillariophyceae), J. Phycol, 18:148.CrossRefGoogle Scholar
  30. Geider, R. J., 1987, Light and temperature dependence of the carbon to chlorophyll a ratio in microalgae and cyanobacteria: implications for physiology and growth of phytoplankton, New Phytol, 106:1.CrossRefGoogle Scholar
  31. Glover, H. E., 1980, Assimilation numbers in cultures of marine phytoplankton, J. Plankton Res., 2:69.CrossRefGoogle Scholar
  32. Goldman, J. C., 1980, Physiological processes, nutrient availability, and concept of relative growth rate in marine phytoplankton ecology., in: “Primary Productivity in the Sea.,” P. G. Falkowski, ed., Plenum Press, New York.Google Scholar
  33. Harding, L. W. J., Fisher, T. R. J., and Tyler, M. A., 1987, Adaptive responses of photosynthesis in phytoplankton: specificity to time-scale of change in light, Biol. Oceanogr., 4:403.Google Scholar
  34. Harrison, W. G., and Platt, T., 1980, Variations in assimilation number of coastal marine phytoplankton: Effects of environmental covariates, J. Plankton Res., 2:249.CrossRefGoogle Scholar
  35. Harrison, W. G., and Platt, T., 1986, Photosynthesis-irradiance relationships in polar and temperate phytoplankton populations, Polar Biol., 5:153.CrossRefGoogle Scholar
  36. Hecky, R. E., and Kilham, P., 1988, Nutrient limitation of phytoplankton in freshwater and marine environments: A review of recent evidence on the effects of enrichment, Limnol. Oceanogr., 33:796.CrossRefGoogle Scholar
  37. Herzig, R., and Falkowski, P. G., 1989, Nitrogen limitation in Isochrysis galbana (Haptophyceae). I. Photosynthetic energy conversion and growth efficiencies, J. Phycol., 25:462.CrossRefGoogle Scholar
  38. Horrigan, S. G., and McCarthy, J. J., 1981, Urea uptake by phytoplankton at various stages of nutrient depletion, J. Plankton Res., 3:403.CrossRefGoogle Scholar
  39. Huntsman, S. A., and Sunda, W. G., 1980, The role of trace metals in regulating phytoplankton growth, in: “The Physiological Ecology of Pphytoplankton,” I. Morris, ed., University of California, Berkeley.Google Scholar
  40. Kiefer, D. A., and Mitchell, D. G., 1983, A simple, steady state description of phytoplankton growth based on absorption cross section and quantum efficiency, Limnol. Oceanogr., 28:770.CrossRefGoogle Scholar
  41. Kolber, Z., Zehr, J. R., and Falkowski, P. G., 1988, Effects of growth irradiance and nitrogen limitation on photosynthetic energy conversion in photosystem II, Plant Physiol., 88:923.PubMedCrossRefGoogle Scholar
  42. Kolber, Z., Wyman, K. D., and Falkowski, P. G., 1990, Natural variability in photosynthetic energy conversion efficiency: A field study in the Gulf of Maine, Limnol. Oceanogr., 35:72.CrossRefGoogle Scholar
  43. Laws, E. A., and Bannister, T. T., 1980, Nutrient-and light-limited growth of Thalassiosira fluviatilis in continuous culture, with implications for phytoplankton growth in the ocean, Limnol. Oceanogr., 25:457.CrossRefGoogle Scholar
  44. Lewis, M. R., and Smith, J. C., 1983, A small volume, short-incubation-time method for measurement of photosynthesis as a function of incident irradiance, Mar. Ecol. Prog. Ser., 13:99.CrossRefGoogle Scholar
  45. Lewis, M. R., Cullen, J. J., and Platt, T., 1984, Relationships between vertical mixing and photoadaptation of phytoplankton: Similarity criteria, Mar. Ecol Prog. Ser., 15:141.CrossRefGoogle Scholar
  46. Malone, T. C., and Neale, P. J., 1981, Parameters of light-dependent photosynthesis for phytoplankton size fractions in temperate estuarine and coastal environments, Mar. Biol, 61:289.CrossRefGoogle Scholar
  47. Martin, J. H., 1990, Glacial-interglacial CO2 change: The iron hypothesis, Paleoceanography, 5:1.CrossRefGoogle Scholar
  48. Martin, J. H., this volume.Google Scholar
  49. Martin, J. H., Broenkow, W. W., Fitzwater, S. E., and Gordon, R. M., 1990, Yes it does: A reply to the comment by Banse, Limnol. Oceanogr., 35:775.CrossRefGoogle Scholar
  50. Martin, J. H., Gordon, R. M., Fitzwater, S., and Broenkow, W. W., 1989, VERTEX: phytoplankton/iron studies in the Gulf of Alaska, Deep-Sea Res., 36:649.CrossRefGoogle Scholar
  51. Menzel, D. W., Hulbert, E. M., and Ryther, J. H., 1963, The effects of enriching Sargasso Sea water on the production and species composition of the phytoplankton, Deep-Sea Res., 10:209.Google Scholar
  52. Morel, F. M. M., Hudson, R. J. M., and Price, N. M., 1991, Trace metal limitation in the sea, Limnol. Oceanogr., Spec. Symp. Vol. (in press).Google Scholar
  53. Odum, E. P., 1971, “Fundamentals of Ecology,” W.B. Saunders Co., Philadelphia.Google Scholar
  54. Osborne, B. A. and Geider, R. J., 1986, Effect of nitrate-nitrogen limitation on photosynthesis of the diatom Phaeodactylum tricornutum Bohlin (Bacillariophyceae), Plant Cell Environ., 9:617.CrossRefGoogle Scholar
  55. Platt, T., Gallegos, C. L., and Harrison, W. G., 1980, Photoinhibition of photosynthesis in natural assemblages of marine phytoplankton, J. Mar. Res., 38:687.Google Scholar
  56. Platt, T., and Jassby, A. D., 1976, The relationship between photosynthesis and light for natural assemblages of coastal marine phytoplankton, J. Phycol., 12:421.Google Scholar
  57. Platt, T., Sathyendrenath, S., Caverhill, C. M., and Lewis, M. R., 1988, Oceanic primary production and available light: Further algorithms for remote sensing, Deep-Sea Res., 35:855.CrossRefGoogle Scholar
  58. Price, N. M., Andersen, L. F., and Morel, F. M. M., 1991, Iron and nitrogen nutrition of equatorial Pacific plankton, Deep-Sea Res., (in press).Google Scholar
  59. Redalje, D. G., and Laws, E. A., 1981, A new method for estimating phytoplankton growth rates and carbon biomass, Mar. Biol., 62:73.CrossRefGoogle Scholar
  60. Richardson, K., Beardall, J., and Raven, J. A., 1983, Adaptation of unicellular algae to irradiance: an analysis of strategies, New Phytol., 93:157.CrossRefGoogle Scholar
  61. Ryther, J. H., and Guillard, R. R. L., 1959, Enrichment experiments as a means of studying nutrients limiting to phytoplankton populations, Deep-Sea Res., 6:65.CrossRefGoogle Scholar
  62. Ryther, J. H., and Yentsch, C. S., 1957, The estimation of phytoplankton production in the ocean from chlorophyll and light data, Limnol. Oceanogr., 2:281.Google Scholar
  63. Sakshaug, E., Demers, S., and Yentsch, C. M., 1987, Thalassiosira oceanica and T. pseudonana: Two different photoadaptational responses, Mar. Ecol. Prog. Ser., 41:275.CrossRefGoogle Scholar
  64. Sakshaug, E., and Holm-Hansen, O., 1977, Chemical composition of Skeletonema costatum (Grev.) Cleve and Pavlova (Monochrysis) lutheri (Droop) Green as a function of nitrate-, phosphate-, and iron-limited growth., J. Exp. Mar. Biol. Ecol, 29:1.CrossRefGoogle Scholar
  65. Sakshaug, E., Kiefer, D. A., and Andresen, K., 1989, A steady state description of growth and light absorption in the marine planktonic diatom Skeletonema costatum, Limnol. Oceanogr., 34:198.CrossRefGoogle Scholar
  66. Shuter, B., 1979, A model of physiological adaptation in unicellular algae, J. Theor. Biol, 78:519.PubMedCrossRefGoogle Scholar
  67. Steemann Nielsen, E., and Hansen, V. K., 1959, Light adaptation in marine phytoplankton populations and its interrelation with temperature, Physiol. Plant., 12:353.CrossRefGoogle Scholar
  68. Strickland, J. D. H., Holm-Hansen, O., Eppley, R. W., and Linn, R. J., 1969, The use of a deep tank in plankton ecology. I. Studies of the growth and composition of phytoplankton crops at low nutrient levels., Limnol Oceanogr., 14:23.CrossRefGoogle Scholar
  69. Thomas, W. H., 1969, Phytoplankton nutrient enrichment experiments off Baja California and in the eastern equatorial Pacific Ocean, J. Fish. Res. Board Can., 26:1133.CrossRefGoogle Scholar
  70. Thomas, W. H., and Dodson, A. N., 1972, On nitrogen deficiency in tropical Pacific oceanic phytoplankton. II. Photosynthetic and cellular characteristics of a chemostat-grown diatom, Limnol. Oceanogr., 17:515.CrossRefGoogle Scholar
  71. Vincent, W. F., Neale, P. J., and Richerson, P. J., 1984, Photoinhibition: algal responses to bright light during diel stratification and mixing in a tropical alpine lake, J. Phycol., 20:201.CrossRefGoogle Scholar
  72. Welschmeyer, N. A., and Lorenzen, C. J., 1981, Chlorophyll-specific photosynthesis and quantum efficiency at subsaturating light intensities, J. Phycol., 17:283.CrossRefGoogle Scholar
  73. Wood, A. M., 1988, Molecular Biology, single cell analysis, and quantitative genetics: new evolutionary genetic approaches in phytoplankton ecology, in: “Immunochemical approaches to coastal, estuarine, and oceanographic questions,” C.M. Yentsch, F.C. Mague, and P.K. Horan, eds., Springer-Verlag.Google Scholar
  74. Yentsch, C. M., Yentsch, C. S., and Strube, L. R., 1977, Variations in ammonium enhancement, and indication of nitrogen deficiency in New England coastal phytoplankton populations, J. Mar. Res., 35:537.Google Scholar
  75. Yentsch, C. S., 1974, The influence of geostrophy on primary production, Tethys, 6:111.Google Scholar
  76. Yentsch, C. S., Yentsch, C. M., Strube, L. R., and Morris, I., 1974, The influence of temperature on the efficiency of photosynthesis in natural populations of marine phytoplankton, in: “Thermal Ecology,” J. W. Gibbons and R. R. Sharitz, eds., AEC, Oak Ridge, Tenn.Google Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • John J. Cullen
    • 1
  • Xiaolong Yang
    • 1
  • Hugh L. MacIntyre
    • 1
  1. 1.Bigelow Laboratory for Ocean SciencesWest Boothbay HarborUSA

Personalised recommendations