Molecular Ecology of Phytoplankton Photosynthesis

  • Paul G. Falkowski
Part of the Environmental Science Research book series (ESRH, volume 43)


The ability to derive basin-scale maps of phytoplankton chlorophyll in the upper ocean from satellite color sensors (see Lewis, this volume) has led increasingly to the development of models relating biomass to primary production (Eppley et al., 1985; Falkowski, 1981; Platt, 1986; Platt and Sathyendranath, 1988; Morel, 1991). Chlorophyll, however, represents a pool size, while primary production is a flux. To derive a flux from a pool, a time-dependent variable must be incorporated. The simplest models relating carbon fixation to chlorophyll incorporate irradiance (Bidigare et al., this volume); the transfer function is a quantum yield. These so-called light-chlorophyll models (Ryther and Yentsch, 1957; Cullen, 1990) are virtually impossible to verify in the ocean, hence their credulity presumably lies in understanding the underlying biological processes and how those processes are regulated. Here, I examine how some of the key parameters which are implicitly or explicitly incorporated in rational light-chlorophyll models are regulated at a fundamental, molecular level.


Quantum Yield Nutrient Limitation Turnover Time Maximum Quantum Yield Irradiance Level 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allen, J. F., Bennett, J., Steinback, K. E., and Arntzen, C. J., 1981, Chloroplast protein phosphorylation couples plastoquinone redox state to distribution of excitation energy between photosystems, Nature, 291:25.CrossRefGoogle Scholar
  2. Bannister, T. T. and Laws, E. A., 1980, Modeling phytoplankton carbon metabolism, in: “Primary Productivity in the Sea,” P.G. Falkowski, ed., Plenum Press, New York.Google Scholar
  3. Beale, S. I. and Appleman, D., 1971, Regulation by degree of light limitation of growth, Plant Physiol., 59:230.CrossRefGoogle Scholar
  4. Bennett, J., 1991, Protein phosphorylation in green plant chloroplasts, Annu. Rev. Plant Physiol. Plant Mol. Biol. 1991, 42:281.CrossRefGoogle Scholar
  5. Berner, T., Dubinsky, Z., Wyman, K., and Falkowski, P.G., 1989, Photoadaptation and the “package effect” in Dunaliella tertiolecta (Chlorophyceae), J. Phycol., 25:70.CrossRefGoogle Scholar
  6. Bidigare, R. R., this volume.Google Scholar
  7. Bonaventura, C. and Meyers, J., 1969, Fluorescence and oxygen evolution from Chlorella pyrenoidosa, Biochim. Biophys. Acta, 189:366.PubMedCrossRefGoogle Scholar
  8. Butler, W. L., and Kitajima, M., 1975, Fluorescence quenching of in photosystem II of chloroplasts, Biochim. Biophys. Acta, 376:116.PubMedCrossRefGoogle Scholar
  9. Caperon, J., 1968, Population growth response of Isochrysis galbana to nitrate variation at limiting concentrations, Ecol., 49:866.CrossRefGoogle Scholar
  10. Cleveland, J. S., Bidigare, R., and Perry, M. J., 1989, Maximum quantum yield of photosynthesis in the northwestern Sargasso Sea, J. Mar. Res., in press.Google Scholar
  11. Critchley, C. and Smillie, R. M., 1981, Leaf chlorophyll fluorescence as an indicator of photoinhibition in Cucumis sativus L., Aust. J. Plant Physiol., 8:133.CrossRefGoogle Scholar
  12. Cullen, J. J., 1990, On models of growth and photosynthesis in phytoplankton, Deep-Sea Res., 37:667.CrossRefGoogle Scholar
  13. Cullen, J. J., Yang, X., and Maclntyre, H. L., this volume.Google Scholar
  14. Demmig-Adams, B., 1990, Carotenoids and photoprotection in plants: A role for xanthophyll zeaxanthin, Biochim. Biophys. Acta, 1020:1.CrossRefGoogle Scholar
  15. Dubinsky, Z., this volume.Google Scholar
  16. Dubinsky, Z., Falkowski, P. G., and Wyman, K., 1986, Light-harvesting and utilization by phytoplankton, Plant Cell Physiol., 27:1335.Google Scholar
  17. Dugdale, R. C., 1967, Nutrient limitation in the sea: Dynamics, identification, and significance, Limnol. Oceanogr., 12(4):685.CrossRefGoogle Scholar
  18. Eppley, R. W., Stewart, E., Abbot, R. M., and Heyman, V., 1985, Estimating ocean primary production from satellite chlorophyll, introduction to regional differences and statistics for the Southern California Bight, J. Plankton Res., 7:57.CrossRefGoogle Scholar
  19. Falkowski, P. G., 1981, Light-shade adaptation and assimilation numbers, J. Plankton Res., 3:203.CrossRefGoogle Scholar
  20. Falkowski, P. G., Owens, T. G., Ley, A. C., and Mauzerall, D. C., 1981, Effects of growth irradiance levels on the ratio of reaction centers in two species of marine phytoplankton, Plant Physiol., 68:969.PubMedCrossRefGoogle Scholar
  21. Falkowski, P. G., 1984, Physiological responses of phytoplankton to natural light regimes, Limnol. Oceanogr., 39:311.Google Scholar
  22. Falkowski, P. G., Dubinsky, Z., and Wyman, K., 1985, Growth-irradiance relationships in phytoplankton, Limnol. Oceanogr., 39:311.CrossRefGoogle Scholar
  23. Falkowski, P. G., Wyman, K., Ley, A. C., and Mauzerall, D. C., 1986, Relationship of steady state photosynthesis to fluorescence in eucaryotic algae, Biochim. Biophys. Acta, 849:183.CrossRefGoogle Scholar
  24. Falkowski, P. G., Kolber, Z., and Fujita, Y., 1988, Effect of redox state on the dynamics of Photosystem II during steady-state photosynthesis in eucaryotic algae, Biochim. Biophys. Acta, 933:432.CrossRefGoogle Scholar
  25. Falkowski, P. G., Sukenik, A., and Herzig, R., 1989, Nitrogen limitation in Isochrysis galbana (Haptophyceae), II. Relative abundance of chloroplast proteins, J. Phycol., 25:471.CrossRefGoogle Scholar
  26. Falkowski, P. G. and Kolber, Z., 1990, Phytoplankton photosynthesis in the Atlantic Ocean as measured from a submersible pump and probe fluorometer in situ, in: “Current Research in Photosynthesis IV,” M. Baltscheffsky, ed., Kluwer, London.Google Scholar
  27. Falkowski, P. G. and LaRoche, J., 1991, Acclimation to spectral irradiance in algae, J. Phycol., 27:8.CrossRefGoogle Scholar
  28. Falkowski, P. G., Ziemann, D., Kolber, Z., and Bienfang, P. K., 1991, Role of eddy pumping in enhancing primary production in the ocean, Nature, 352:55.CrossRefGoogle Scholar
  29. Farquhar, G., Von Caemmerer, S., and Berry, J., 1980, A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species, Planta, 149:78.CrossRefGoogle Scholar
  30. Fischer, T., Shurtz-Swirski, R., Gepstein, S., and Duzinsky, Z., 1989, Changes in the levels of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) in Tetraedon minimum (Chlorophyta) during light and shade adaptation, Plant Cell Physiol., 30:221.Google Scholar
  31. Geider, R. J., Platt, T., and Raven, J. A., 1986, Size dependence of growth and photosynthesis in diatoms: A synthesis, Mar. Ecol. Prog. Ser., 30:93.CrossRefGoogle Scholar
  32. Genty, B., Harbinson, J., Briantais, J.-M., and Baker, N. R., 1990, The relationship between non-photochemical quenching of chlorophyll fluorescence and the rate of photosystem 2 photochemistry in leaves, Photosynthesis Res., 25:249.CrossRefGoogle Scholar
  33. Gerber, D. W. and Bums, J. E., 1981, Photoinhibition and P700 in the marine diatom Amphora sp., Plant Physiol., 68:699.PubMedCrossRefGoogle Scholar
  34. Gibbs, P. B. and Biggins, J., 1991, In vivo and in vitro protein phosphorylation studies on Ochromonas danica, an alga with a chlorophyll a/c fucoxanthin binding protein, Plant Physiol, 97:388.PubMedCrossRefGoogle Scholar
  35. Goldman, J. C., 1980, Physiological processes, nutrient availability, and the concept of relative growth rate in marine phytoplankton ecology, in “Primary Productivity in the Sea,” P.G. Falkowski, ed., Plenum Press, New York.Google Scholar
  36. Greenbaum, E., 1977, The photosynthetic unit of hydrogen evolution, Science, 196:879.PubMedCrossRefGoogle Scholar
  37. Greenbaum, N. L., Ley, A. C., and Mauzerall, D. C., 1987, Use of a light-induced respiratory transient to measure the optical cross-section of photosystem I in Chlorella, Plant. Physiol., 84:879.PubMedCrossRefGoogle Scholar
  38. Greenbaum, N. L. and Mauzerall, D., 1991, Effects of irradiance level on distribution of chlorophylls between PSII and PSI as determined from optical cross-sections, Biochim. Biophys. Acta, 1057:195.CrossRefGoogle Scholar
  39. Greene, R. M., Geider, R. J., and Falkowski, P. G., 1991, Effect of iron limitation on photosynthesis in a marine diatom, Limnol. Oceanogr. (in press).Google Scholar
  40. Herzig, R. and Falkowski, P. G., 1989, Nitrogen limitation in Isochrysis galbana (Haptophyceae), I. Photosynthetic energy conversion and growth efficiencies, J. Phycol., 25:462.CrossRefGoogle Scholar
  41. Jassby, A. D. and Platt, T., 1976, Mathematical formulation of the relationship between photosynthesis and light for phytoplankton, Limnol Oceanogr., 21:540.CrossRefGoogle Scholar
  42. Kiefer, D. A. and Mitchell, B. G., 1983, A simple, steady-state description of phytoplankton growth based on absorption cross-section and quantum efficiency, Limnol Oceanogr., 28:770.CrossRefGoogle Scholar
  43. Kiefer, D. A. and Reynolds, R., this volume.Google Scholar
  44. Kiefer, D. A., Chamberlain, W. S., and Booth, C. R., 1989, Natural fluorescence of chlorophyll a: Relationship to photosynthesis and chlorophyll concentration in the western South Pacific gyre, Limnol Oceanogr., 34:868.CrossRefGoogle Scholar
  45. Kirk, J. T. O., 1983, “Light and Photosynthesis in Aquatic Ecosystems,” Cambridge University Press, New York.Google Scholar
  46. Kirk, J. T. O., this volume.Google Scholar
  47. Kolber, Z., Zehr, J., and Falkowski, P. G., 1988, Effects of growth irradiance and nitrogen limitation on photosynthetic energy conversion in Photosystem II, Plant Physiol., 88:923.PubMedCrossRefGoogle Scholar
  48. Kolber, Z., Wyman, K. D., and Falkowski, P. G., 1990, Natural variability in photosynthetic energy conversion efficiency: A field study in the Gulf of Maine, Limnol Oceanogr., 35:72.CrossRefGoogle Scholar
  49. Kuhlbrandt, W. and Wang, D. N., 1991, Three-dimensional structure of plant light-harvesting complex determined by electron crystallography, Nature, 351:130.CrossRefGoogle Scholar
  50. Kyle, D. J., Ohad, I., and Arntzen, C. J., 1985, Membrane protein damage and repair: Selective loss of quinone protein function in chloroplast membranes, Proc. Nat. Acad. Sci. USA, 81:4070.CrossRefGoogle Scholar
  51. LaRoche, J., Mortain-Bertrand, A., and Falkowski, P. G., 1991, Light intensity-induced changes in cab mRNA and light-harvesting complex II apoprotein levels in the unicellular chlorophyte Dunaliella tertiolecta, Plant Physiol., 97:147.PubMedCrossRefGoogle Scholar
  52. Laws, E. A., DiTullio, G. R., and Redalje, D. G., 1987, High phytoplankton growth and production rates in the North Pacific subtropical gyre, Limnol. Oceanogr., 32:905.CrossRefGoogle Scholar
  53. Lewis, M., this volume.Google Scholar
  54. Ley, A. C., 1980, The distribution of absorbed light energy for algal photosynthesis, in:, “Primary Productivity in the Sea,” P.G. Falkowski, ed., Plenum, Press, New York.Google Scholar
  55. Ley, A. C. and Mauzerall, D., 1982, Absolute absorption cross-sections for photosystem II and the minimum quantum requirements for photosynthesis in Chlorella vulgaris, Biochim. Biophys. Acta, 680:95.CrossRefGoogle Scholar
  56. Mauzerall, D. and Greenbaum, N. L., 1989, The absolute size of a photosynthetic unit, Biochim. Biophys. Acta, 974:119.CrossRefGoogle Scholar
  57. McAllister, C. D., 1961, Observations on the variation of planktonic photosynthesis with light intensity, using both the O2 and 14C-methods, Limnol. Oceanogr., 6:483.CrossRefGoogle Scholar
  58. Michel, H.-P. and Deisenhofer, J., 1988, Relevance of the photosynthetic reaction center from purple bacteria to the structure of photosystem II, Biochem., 27:1.CrossRefGoogle Scholar
  59. Michel, H.-P., Teilenbach, M., and Boschetti, A., 1983, A chlorophyll b-less mutant of Chlamydomonas reihhardtii lacking in the light-harvesting chlorophyll a/b-protein complex but not in its apoproteins, Biochim. Biophys. Acta, 725:417.CrossRefGoogle Scholar
  60. Morel, A., 1991, Light and marine photosynthesis: A spectral model with geochemical and climatological implications, Prog. Oceanog., 26:263.CrossRefGoogle Scholar
  61. Mortain-Bertrand, A., Bennett, J., and Falkowski, P. G., 1990, Photoregulation of the light-harvesting chlorophyll protein complex associated with Photosystem II in Dunaliella tertiolecta, Plant Physiol., 94:304.PubMedCrossRefGoogle Scholar
  62. Myers, J. and Burr, G. O., 1940, Studies on photosynthesis: Some effects of light of high intensity on Chlorella, J. Gen. Physiol., 24:45.PubMedCrossRefGoogle Scholar
  63. Myers, J., 1980, On the algae: Thoughts about physiology and measurements of efficiency, in: “Primary Productivity in the Sea,” P.G. Falkowski, ed., Plenum Press, New York.Google Scholar
  64. Myers, J. and Graham, J.-R, 1971, The photosynthetic unit in Chlorella measured by repetitive short flashes, Plant Physiol., 48:282.PubMedCrossRefGoogle Scholar
  65. Neale, P. J., 1987, Algal photoinhibition and photosynthesis in the aquatic environment, in “Photoinhibition,” D. Kyle, C.J. Arntzen, and B. Osmond, eds., pp. 39–65, Elsevier, Amsterdam.Google Scholar
  66. Ohad, I., Adir, N., Koike, H., Kyles, D. J., and Inoue, Y., 1990, Mechanism of photoinhibition in vivo, J. Biol. Chem., 265:1972.PubMedGoogle Scholar
  67. Osmond, C. B., 1981, Photorespiration and photoinhibition: Implications for the energetics of photosynthesis, Biophys. Biochim. Acta, 639:77.CrossRefGoogle Scholar
  68. Osborne, B. A., and Geider, R. J., 1986, Effect of nitrate-nitrogen limitation on photosynthesis of the diatom Phaeodactylum tricornutum Bohlin (Bacillariophyceae), Plant Cell Environ., 9:617.CrossRefGoogle Scholar
  69. Owens, T. G., 1986, Light-harvesting function in the diatom Phaeodactylum tricornutum, II. Distribution of excitation energy between the photosystems, Plant Physiol., 80:739.PubMedCrossRefGoogle Scholar
  70. Platt, T., 1986, Primary production of the ocean water column as a function of surface light intensity: algorithms for remote sensing, Deep-Sea Res., 33:149.CrossRefGoogle Scholar
  71. Platt, T. and Sathyendranath S., 1988, Oceanic primary production: estimation by remote sensing at local and regional scales, Science, 241:1613.PubMedCrossRefGoogle Scholar
  72. Portis, A. R., Salvucci, M. E., and Ogren, W. L., 1986, Activation of ribulose bisphosphate carboxylase/oxygenase at physiological CO2 and ribulose bisphosphate concentrations by rubisco activase, Plant Physiol., 82:967.PubMedCrossRefGoogle Scholar
  73. Ryther, J. H. and Yentsch, C. S., 1957, The estimation of phytoplankton production in the ocean from chlorophyll and light data, Limnol. Oceanogr., 2:281.Google Scholar
  74. Sakshaug, E., Kiefer, D. A., and Andersen, K., 1989, A steady state description of growth and light absorption in the marine planktonic diatom Skeletonema costatum, Limnol. Oceanogr., 34:198.CrossRefGoogle Scholar
  75. Sakshaug, E., Johnson, G., Andresen, K., and Vernet, M., 1991, Modeling of light-dependent algal photosynthesis and growth: Experiments with the Barents Sea diatoms Thalassiosira nordenskioeldii and Chaeotocerosfurcellatus, Deep-Sea Res., 38:415.CrossRefGoogle Scholar
  76. Schatz, G. H., Brock, H., and Holzwarth, A. R., 1988, Kinetic and energetic model for the primary processes in photosystem II, Biophys. J., 54:397.PubMedCrossRefGoogle Scholar
  77. Sukenik, A., Bennett, J., and Falkowski, P. G., 1987, Light-saturated photosynthesis: limitation by electron transport or carbon fixation?, Biochim. Biophys. Acta, 891:205.CrossRefGoogle Scholar
  78. Sukenik, A., Bennett, J., and Falkowski, P. G., 1988, Changes in the abundance of individual apoproteins of light-harvesting chlorophyll a/b-protein complexes of Photosystem I and II with growth irradiance in the marine chlorophyte Dunaliella tertiolecta, Biochim. Biophys. Acta, 932:206.CrossRefGoogle Scholar
  79. Takahashi, M., Shimura, S., Yamaguchi, Y., and Fujita, Y., 1971, Photo-inhibition of phytoplankton photosynthesis as a function of exposure time, J. Oceanogr. Soc. Japan, 27:43.CrossRefGoogle Scholar
  80. Telfer, A., Bottin, H., Barber, J., and Mathis, P., 1984, The effect of magnesium and phosphorylation of the light-harvesting chlorophyll a/b protein on the yield of P700 photooxidation in pea chloroplasts, Biochim. Biophys. Acta, 764:324.CrossRefGoogle Scholar
  81. Thomas, W. H., 1970, On nitrogen deficiency in tropical Pacific Ocean phytoplankton: Photosynthetic parameters in poor and rich water, Limnol. Oceanogr., 15:380.CrossRefGoogle Scholar
  82. Turpin, D. H., 1991, Effects of inorganic N availability on algal photosynthesis and carbon metabolism, J. Phycol., 27:14.CrossRefGoogle Scholar
  83. Turpin, D. H. and Bruce, D., 1990, Regulation of photosynthetic light-harvesting by nitrogen assimilation in the green alga Selenastrum minutum, FEBS Lett., 263:99.CrossRefGoogle Scholar
  84. Vincent, W. F., Neale, P. J., and Richerson, P. J., 1984, Photoinhibition: Alga responses to bright light during diel stratification and mixing in a tropical alpine lake, J. Phycol., 20:201.CrossRefGoogle Scholar
  85. Weaver, E. C. and Weaver, H. E., 1969, Paramagnetic unit in spinach subchloroplast particles; estimation of size, Science (Wash., D.C.), 165:906.CrossRefGoogle Scholar
  86. Welschmeyer, M. A. and Lorenzen, C. J., 1981, Chlorophyll-specific photosynthesis and quantum efficiency at subsaturating light intensities, J. Phycol., 17:283.CrossRefGoogle Scholar
  87. Zipfel, W. and Owens, T. G., 1991, Calculation of absolute Photosystem I absorption cross-sections from P700 photooxidation kinetics, Photosyn. Res., 29:23.Google Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • Paul G. Falkowski
    • 1
  1. 1.Department of Applied ScienceBrookhaven National LaboratoryUptonUSA

Personalised recommendations