The Functional and Optical Absorption Cross-Sections of Phytoplankton Photosynthesis

  • Zvy Dubinsky
Part of the Environmental Science Research book series (ESRH, volume 43)


Phytoplankton, like all photosynthetic organisms, have highly complex light-harvesting systems, consisting of pigment beds arranged on asymmetrical membranes. These pigment arrays, or “antennae”, as well as any other cellular, light-absorbing structures and compounds have a definite probability “cloud” for absorbing impinging photons. This wavelength-dependent probability may be quantified as a cross-section, with dimensions of area per unit of compound. These in vivo cross-sections are invariably smaller than those of the same substance, for example, chlorophyll a, when extracted by any suitable solvent, brought into solution, and purified. The optical in-vivo cross-section of these pigments varies considerably between species, as well as within the same species, in response to such environmental factors as ambient light and nutrient status.


Maximal Quantum Yield Phytoplankton Cell Growth Irradiance Photosynthetic Unit Phytoplankton Photosynthesis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Atlas, D., and Bannister, T. T., 1980, Dependence of mean spectral extinction coefficient of phytoplankton on depth, water colour and species, Limnol. Oceanogr., 25:157.CrossRefGoogle Scholar
  2. Bannister, T. T., 1974, Production equations in terms of chlorophyll concentration, quantum yield and upper limits on production, Limnol. Oceanogr., 19:1.CrossRefGoogle Scholar
  3. Berner, T., Wyman, K., Dubinsky, Z., and Falkowski, P.G., 1989, Photoadaptation and the “package effect” in Dunaliella tertiolecta (Chlorophyceae), J. Phycol., 25:70.CrossRefGoogle Scholar
  4. Boichenko, V.A., Ladygin, V.G., and Litvin, F.F., 1989, Structural and functional organization of photosynthetic units in the cells of Chlamydomonas reinhardii, Mol. Biol. (Moscow), 23:107.Google Scholar
  5. Cha, J. and Mauzerall, D., 1990, The photosystem II inhibitor DCMU decreases the observed turnover time of photosystem I in Chlorella yet retains the high thermodynamic efficiency determined by pulsed photoacoustics, Proc. 10th International Biophysics Congress, Vancouver, BC, Abs. No. P7.3.26.Google Scholar
  6. Canaani, O., Malkin, S., and Mauzerall, D., 1988, Pulsed photoacoustic detection of flash induced oxygen evolution from intact leaves and its oscillations, Proc. Natl. Acad. Sci. USA., 85:4725.PubMedCrossRefGoogle Scholar
  7. Chisholm, S., this volume.Google Scholar
  8. Cleveland, J. S., Perry, M. J., Kiefer, D. A., and Talbot, M. C., 1989, Maximal quantum yield of photosynthesis in the northwestern Sargasso Sea, J. Mar. Res., 47:869.CrossRefGoogle Scholar
  9. Dubinsky, Z., 1980, Light utilization efficiency in natural phytoplankton communities, in: “Primary Productivity in the Sea,” P.G. Falkowski, ed., Plenum, New York.Google Scholar
  10. Dubinsky, Z., and Polna, M., 1976, Pigment composition during a Peridinium bloom in Lake Kinneret (Israel), Hydrobiologia, 51:234.CrossRefGoogle Scholar
  11. Dubinsky, Z., and Berman, T., 1976, Light utilization efficiencies of phytoplankton in Lake Kinneret (Sea of Galilee), Limnol. Oceanogr., 21:226.CrossRefGoogle Scholar
  12. Dubinsky, Z., and Berman, T., 1979, Seasonal changes in the spectral composition of downwelling irradiance in Lake Kinneret (Israel), Limnol. Oceanogr., 24:652.CrossRefGoogle Scholar
  13. Dubinsky, Z., and Berman, T., 1981a, Light utilization by phytoplankton in Lake Kinneret (Israel), Limnol. Oceanogr., 26:660.CrossRefGoogle Scholar
  14. Dubinsky, Z., and Berman, T., 1981b, Photosynthetic efficiencies in aquatic ecosystems, Verh. Internat. Verein. Limnol., 21:205.Google Scholar
  15. Dubinsky, Z., Berman, T., and Schanz, F., 1984, Field experiments for in situ measurement of photosynthetic efficiency and quantum yield, J. Plankton Res., 6:339.CrossRefGoogle Scholar
  16. Dubinsky, Z., Falkowski, P. G., Porter, J. W., and Muscatine, L., 1984, The absorption and utilization of radiant energy by light and shade adapted colonies of the hermatypic coral, Stylophora pistillata, Proc. Roy. Soc. Lond., 222B:203.CrossRefGoogle Scholar
  17. Dubinsky, Z., Falkowski, P. G., and Wyman, K., 1986, Light harvesting and utilization in phytoplankton, Plant Cell Physiol., 27:1335.Google Scholar
  18. Dubinsky, Z., Falkowski, P. G., Post, A. F., and van Nes, U. M., 1987, A system for measuring phytoplankton photosynthesis in a defined light field with an oxygen electrode, J. Plankton Res., 9:607.CrossRefGoogle Scholar
  19. Dubinsky, Z., Stambler, N., Ben-Zion, M., McCloskey, L. R., Falkowski, P. G., and Muscatine, L., 1990, The effects of external nutrient resources on the optical properties and photosynthetic efficiency of Stylophora pistillata, Proc. Roy. Soc. Lond., B239:231.CrossRefGoogle Scholar
  20. Duysens, L. N. M., 1956, The flattening of the absorption spectrum of suspensions as compared to that of solutions, Biochim. Biophys. Acta., 19:1.PubMedCrossRefGoogle Scholar
  21. Emerson, R., and Arnold, W., 1932, A separation of the reactions in photosynthesis by means of intermittent light, Jour. Gen. Physiol., 15:391.CrossRefGoogle Scholar
  22. Falkowski, P. G., 1980, Light-shade adaptation in marine phytoplankton, in: “Primary Productivity in the Sea”, P. G. Falkowski, ed., Plenum, New York.CrossRefGoogle Scholar
  23. Falkowski, P. G., 1981, Light-shade adaptation and assimilation numbers, J. Plankton Res., 3:203.CrossRefGoogle Scholar
  24. Falkowski, P. G., 1984, Physiological responses of phytoplankton to natural light regimes, J. Plankton Res., 6:295.CrossRefGoogle Scholar
  25. Falkowski, P.G., this volume.Google Scholar
  26. Falkowski, P. G., Dubinsky, Z., and Wyman, K., 1985, Growth-irradiance relationships in phytoplankton, Limnol. Oceanogr., 30:311.CrossRefGoogle Scholar
  27. Falkowski, P. G., Wyman, K., Ley, A., and Mauzerall, D., 1986, Relationship of steady-state photosynthesis to fluorescence in eucaryotic algae, Biochim. Biophys. Acta., 849:183.CrossRefGoogle Scholar
  28. Gordon, H. R., 1989, Can the Lambert-Beer law be applied to the diffuse attenuation coefficient of ocean water?, Limnol. Oceanogr., 34:1389.CrossRefGoogle Scholar
  29. Greenbaum, E., 1977, The photsynthetic unit of hydrogen evolution, Science, 196:879.PubMedCrossRefGoogle Scholar
  30. Greenbaum, N.L. and Mauzerall, D., 1987, Measurement of the optical cross section of photosystem I in Chlorella, in: “Progress in Photosynthesis Research,” Vol. II, J. Biggens, ed., Martinus Nijhoff Publishers, Dordrecht, The Netherlands.Google Scholar
  31. Greenbaum, N.L. and Mauzerall, D., 1991, Effects of irradiance level on distribution of chlorophylls between PSII and PSI as determined from optical cross-sections, Biochim. Biophys. Acta, 1057:195.CrossRefGoogle Scholar
  32. Greenbaum, N. L., Ley, A. C., and Mauzerall, D. C., 1987, Use of a light-induced respiratory transient to measure the optical cross section of photosystem I in Chlorella, Plant Physiol., 84:879.PubMedCrossRefGoogle Scholar
  33. Heath, M. R., Richardson, K., and Kiorboe, T., 1990, Optical assessment of phytoplankton nutrient depletion, J. Plankton Res., 12:381.CrossRefGoogle Scholar
  34. Herzig, R. and Falkowski, P. G., 1989, Nitrogen limitation in Isochrysis galbana (Haptophyceae). I. photosynthetic energy conversion and growth efficiencies, J. Phycol., 25:462.CrossRefGoogle Scholar
  35. Ketchum, B. H., Ryther, J. H., Yentch, C. S., and Corwin, N., 1958, Productivity in relation to nutrients, Rapp. P.-V. Reun. Cons. Perm. Int. Expl. Mer., 144:132.Google Scholar
  36. Kiefer, D.A., this volume.Google Scholar
  37. Kiefer, D. A., and Mitchell, B. G., 1983, A simple steady state description of phytoplankton growth based on absorption cross section and quantum efficiency, Limnol. Oceanogr., 24:770.CrossRefGoogle Scholar
  38. Kiefer, D. A., and Austin, R.W., 1974, The effect of varying phytoplankton concentration on submarine light transmission in the Gulf of California, Limnol. Oceanogr., 19:55.CrossRefGoogle Scholar
  39. Kiefer, D. A., Olson, R. J., and Wilson, W. H., 1979, Reflectance spectroscopy of marine phytoplankton, Part 1. Optical properties as related to age and growth rate, Limnol. Oceanogr., 24:664.CrossRefGoogle Scholar
  40. Kirk, J. T. O., 1975a, A theoretical analysis of the contribution of algal cells to the attenuation of light within natural waters. I. General treatment of suspensions of pigmented cells, New Phytol., 75:11.CrossRefGoogle Scholar
  41. Kirk, J. T. O., 1975b, A theoretical analysis of the contribution of algal cells to the attenuation of light within natural waters. II. Spherical cells, New Phytol., 75:21.CrossRefGoogle Scholar
  42. Kirk, J. T. O., 1976, A theoretical analysis of the contribution of algal cells to the attenuation of light within natural waters. III. Cylindrical and spheroidal cells, New Phytol., 77:341.CrossRefGoogle Scholar
  43. Kirk, J. T. O., 1980, Spectral absorption properties of natural waters: contribution of the soluble and particulate fractions to light absorption in some inland waters of southeastern Australia, Aust. J. Mar. Freshwater Res., 32:287.CrossRefGoogle Scholar
  44. Kirk, J. T. O., 1983, “Light and Photosynthesis in Aquatic Ecosystems,” Cambridge University Press, Cambridge.Google Scholar
  45. Kirk, J. T. O., 1984, Dependence of the relationship between inherent and apparent optical properties of water on solar altitude, Limnol. Oceanogr., 29:350.CrossRefGoogle Scholar
  46. Kolber, Z., Wyman, K. D., and Falkowski, P. G., 1990, Natural variability in photosynthetic energy conversion efficiency: A study in the Gulf of Maine, Limnol. Oceanogr., 35:72.CrossRefGoogle Scholar
  47. Lewis, M., this volume.Google Scholar
  48. Ley, A. C., 1984, Effective absorption cross-sections in Porphyridium cruentum implications for energy transfer between phycobilisomes and photosystem II reaction centers, Plant Physiol., 74:451.PubMedCrossRefGoogle Scholar
  49. Ley, A. C., and Mauzerall, D. C., 1982, Absolute absorption cross-sections for photosystem II and the minimum quantum requirement for photosynthesis in Chlorella vulgaris, Biochim. Biophys. Acta., 680:95.CrossRefGoogle Scholar
  50. Mauzerall, D., 1972, Light-induced fluorescence changes in Chlorella, and the primary photoreactions for the production of oxygen, Proc. Nat. Acad. Sci. USA, 69:1358.PubMedCrossRefGoogle Scholar
  51. Mauzerall, D., and Greenbaum, N. L., 1989, The absolute size of a photosynthetic unit, Biochim. Biophys. Acta., 974:119.CrossRefGoogle Scholar
  52. Mitchell, B. G., and Kiefer, D. A., 1984, Determination of absorption and fluorescence absorption spectra for phytoplankton, in: “Marine Phytoplankton and Productivity,” O. Holm-Hansen, L. Bolis, and R. Gilles, eds., Springer Verlag, Berlin.Google Scholar
  53. Morel, A., 1978, Available, usable and stored radiant energy in relation to marine photosynthesis, Deep-Sea Res., 25:673.CrossRefGoogle Scholar
  54. Morel, A., and Bricaud, A., 1981, Theoretical results concerning light absorption in a discrete medium, and application to specific absorption of phytoplankton, Deep-Sea Res., 28:1375.CrossRefGoogle Scholar
  55. Perry, M. J., and Porter, S. M., 1989, Determination of the cross-section absorption co-efficient of individual phytolankton cells by analytical flow cytometry, Limnol. Oceanogr., 34:1727.CrossRefGoogle Scholar
  56. Preisendorfer, R. W., 1961, Application of radiative transfer theory to light measurements in the sea, Int. Union Geod. Geophys. Monogr., 10:11.Google Scholar
  57. Preisendorfer, R. W., 1976, “Hydrologic Optics,” V. I. NTIS PB 259793/8ST. Natl. Tech. Inform. Serv., Springfield, Va.Google Scholar
  58. Prieur, L., and Sathyendranath, S., 1981, An optical classification of coastal and oceanic waters based on the specific absorption curves of phytoplankton pigments, dissolved organic matter, and other particulate materials, Limnol. Oceanogr., 26:671.CrossRefGoogle Scholar
  59. Richardson, K., Beardall, J., and Raven, J. A., 1983, Adaptation of unicellular algae to irradiance: an analysis of strategies, New Phytol., 93:157.CrossRefGoogle Scholar
  60. Smith, R. C., and Baker, K. S., 1978a, The bio-optical state of ocean waters and remote sensing, Limnol. Oceanogr., 23:247.CrossRefGoogle Scholar
  61. Smith, R. C., and Baker, K. S., 1978b, Optical classification of natural waters, Limnol. Oceanogr., 23:260.CrossRefGoogle Scholar
  62. Smith, R. C., Marra, J., Perry, M. J., Baker, K. S., Swift, E., Buskey, E., and Kiefer, D. A., 1989, Estimation of a photon budget for the upper ocean in the Sargasso Sea, Limnol. Oceanogr., 34:1673.CrossRefGoogle Scholar
  63. Steemen-Nielsen, E., and Jorgensen, E.G., 1968, The adaptation of algae, I, General part, Physiol. Pl., 21:401.CrossRefGoogle Scholar
  64. Tyler, J. E., and Smith, R. C., 1970, “Measurements of Spectral Irradiance Underwater,” Gordon and Breach.Google Scholar
  65. Wilson, W. H., and Kiefer, D. A., 1979, Reflectance spectroscopy of marine phytoplankton, Part 2, A simple model of ocean color, Limnol. Oceanogr., 24:673.CrossRefGoogle Scholar
  66. Wyman, K.D., Dubinsky, Z., Porter, J. W., and Falkowski, P. G., 1987, Light absorption and utilization among hermatypic corals: a study in Jamaica, West Indies, Marine Biology, 283:292.Google Scholar
  67. Yentsch, C. S., and Vaccaro, R. Y., 1958, Phytoplankton and nitrogen in the oceans, Limnol. Oceanogr., 3:443.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • Zvy Dubinsky
    • 1
  1. 1.Department of Life SciencesBar Ilan UniversityRamat GanIsrael

Personalised recommendations