Advertisement

Do Marine Phytoplankton Influence Global Climate?

  • P. M. Holligan
Part of the Environmental Science Research book series (ESRH, volume 43)

Abstract

The oceans have a major influence on the climate of the earth through effects on the global solar radiation budget, on meridional heat transport, and on the trace gas composition of the atmosphere. The climate of the ocean-atmosphere system is sensitive to variations of the solar constant and the orbital characteristics of the earth. However, the properties of surface ocean waters and of the marine atmosphere are modified also by the optical and biochemical properties of marine organisms, in particular, the phytoplankton. It is generally recognized that the global climate would have been quite different through geological time in the absence of life in the sea.

Keywords

Particulate Organic Carbon Marine Phytoplankton Cloud Condensation Nucleus Aeolian Dust Emiliania Huxleyi 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ayers, G. P., Ivey, J. P., and Gillett, R. W., 1991, Coherence between seasonal cycles of dimethyl sulphide, methanesulphonate and sulphate in marine air, Nature, 349:404.CrossRefGoogle Scholar
  2. Balch, W. M., Holligan, P. M., Ackelson, S. G., and Voss, K. J., 1991, Biological and optical properties of mesoscale coccolithophore blooms in the Gulf of Maine, Limnol. Oceanogr., 36:629.CrossRefGoogle Scholar
  3. Barnola, J.-M., Pimenta, P., Raynaud, D., and Korotkevich, Y. S., 1991, CO2 — climate relationship as deduced from the Vostok ice core: a re-examination based on new measurements and on a re-valuation of the air dating, Tellus, 43B:83.Google Scholar
  4. Barnola, J.-M., Raynaud, D., Korotkevich, Y. S., and Lorius, C., 1987, Vostok ice core provides 160,000-year record of atmospheric CO2, Nature, 329:408.CrossRefGoogle Scholar
  5. Berger, W. H., and Keir, R. S., 1984, Glacial-Holocene changes in atmospheric CO2 and the deep-sea record, American Geophys. Union, Geophys. Mono. Series, 29:337.CrossRefGoogle Scholar
  6. Berner, R. A., 1989, Atmospheric carbon dioxide levels over Phanerozoic time, Science, 249:1382.CrossRefGoogle Scholar
  7. Blackburn, T. H., 1991, Accumulation and regeneration: Processes at the benthic boundry layer, In: “Ocean Margin Processes in Global Change,” R.F.C. Mantoura, J.-M. Martin, and R. Wollast, eds., John Wiley & Sons, Chichester.Google Scholar
  8. Boyle, E. A., 1988, The role of vertical chemical fractionation in controlling late Quaternary atmospheric carbon dioxide, J. Geophys. Res., 93:15701.CrossRefGoogle Scholar
  9. Broecker, W. S., and Denton, G. H., 1989, The role of ocean-atmosphere reorganisation in glacial cycles, Geochim. Cosmochim. Acta, 53:2465.CrossRefGoogle Scholar
  10. Broecker, W. S., and Peng, T.-H., 1987, The role of CaCO3 compensation in the glacial to interglacial atmospheric CO2 change, Global Biogeochem. Cycles, 1:15.CrossRefGoogle Scholar
  11. Broecker, W. S., and Peng, T.-H., 1989, The cause of the glacial to interglacial atmospheric CO2 change: A polar alkalinity hypothesis, Global Biogeochem. Cycles, 3:215.CrossRefGoogle Scholar
  12. Chamberlin, T. C., 1898, The influence of great epochs of limestone formation upon the constitution of the atmosphere, J. Geol., 6:609.CrossRefGoogle Scholar
  13. Charlson, R. J., Lovelock, J. E., Andreae, M. O., and Warren, S. G., 1987, Oceanic phytoplankton, atmospheric sulphur, cloud albedo and climate, Nature, 326:655.CrossRefGoogle Scholar
  14. Dansgaard, W., White, J. W. C., and Johnsen, S. J., 1989, The abrupt termination of the Younger Dryas climate event, Nature, 339:532.CrossRefGoogle Scholar
  15. Dymond, J., and Lyle, M., 1985, Flux comparisons between sediments and sediment traps in the eastern tropical Pacific: Implications for atmospheric CO2 variations during the Pleistocene, Limnol. Oceanogr., 30:699.CrossRefGoogle Scholar
  16. Falkowski, P. G., Kim, Y., Kolber, Z., Wilson, C., Wirick, C., and Cess, R., 1991, Distinguishing between anthropogenic and natural factors affecting low-level cloud albedo over the North Atlantic Ocean, Science, submitted.Google Scholar
  17. Foley, J. A., Taylor, K. E., and Ghan, S. J., 1991, Planktonic dimethylsuphide and cloud albedo: An estimate of the feedback response, Climatic Change, 18:1.CrossRefGoogle Scholar
  18. Gordon, A. S., and Millero, F. J., 1985, Adsorption mediated decrease in the biodegradation rate of organic compounds, Microb. Ecol., 11:289.CrossRefGoogle Scholar
  19. Harvey, D. L. D., 1988, Climatic impact of ice-age aerosols, Nature, 334:333.CrossRefGoogle Scholar
  20. Hegg, D. A., Ferek, R. J., Hobbs, P. V., and Radke, L. F., 1991, Dimethylsulfide and cloud condensation nucleus correlations in the northeast Pacific Ocean, J. Geophys. Res., 96:13189.CrossRefGoogle Scholar
  21. Herbert, T. D., Curry, W. B., Barron, J. A., Codispoti, L. A., Gersonde, R., Keir, R. S., Mix, A. C., Mycke, B., Schrader, H., Stein, R., Thierstein, H. R., 1989, Geological reconstructions of marine productivity, In: “Productivity of the Ocean: Present and Past,” W. H. Berger, V. S. Smetacek, and G. Wefer, eds., John Wiley & Sons, Chichester.Google Scholar
  22. Keir, R. S., 1988, On the late Pleistocene ocean geochemistry and circulation, Paleoceanography, 3:413.CrossRefGoogle Scholar
  23. Keir, R. S., and Berger, W. H., 1985, Late Holocene carbonate dissolution in the equatorial Pacific: Reef growth or neoglaciation? In: “Natural Variations in Carbon Dioxide and the Carbon Cycle, Archean to Present,” E.T. Sundquist and W.S. Broecker, eds., Geophys. Monogr. Ser., 32:208, AGU, Washington D.C.Google Scholar
  24. Keller, M. D., Bellows, W. K., and Guillard, R. R. L., 1989, Dimethylsulphide production in marine phytoplankton, In: “Biogenic Sulphur in the Marine Environment,” E.S. Saltzmanand W.J. Cooper, eds., Am. Chem. Soc. Symp. Ser., 393:167, ACS, Washington.Google Scholar
  25. Kiene, R. P., and Bates, T. S., 1990, Biological removal of dimethylsulphide from sea water, Nature, 345:702.CrossRefGoogle Scholar
  26. Kirk, J. T. O., 1988, Solar heating of water bodies as influenced by their inherent optical properties, J. Geophys. Res., 93:10897.CrossRefGoogle Scholar
  27. Lampitt, R. S., 1985, Evidence for the seasonal distribution of detritus to the deep-sea floor and its subsequent resuspension, Deep-Sea Res., 32:885.CrossRefGoogle Scholar
  28. Legrand, M., Feniet-Saigne, C., Saltzman, E. S., Germain, C. Barkov, N. I., and Petrov, V. N., 1991, Ice-core record of oceanic emissions of dimethylsulphide during the last climate cycle, Nature, 350:544.CrossRefGoogle Scholar
  29. Lewis, M. R., Cullen, J. J., and Platt, T., 1983, Phytoplankton and thermal structure in the upper ocean; consequences of nonuniformity in chlorophyll profile, J. Geophys. Res., 88:2565.CrossRefGoogle Scholar
  30. Lovelock, J. E., 1986, Geophysiology: A new look at earth science, Bull. Amer. Meteorol. Soc, 67:392.Google Scholar
  31. Lovelock, J. E., 1991, Geophysiology of the oceans, In: “Ocean Margin Processes in Global Change,” R.F.C. Mantoura, J.-M. Martin, and R. Wollast, eds., John Wiley & Sons, Chichester.Google Scholar
  32. Lyle, M., Murray, D. W., Finney, B. P., Dymond, J., Robbins, J. M., and Brooksforce, K., 1988, The record of late Pleistocene biogenic sedimentation in the eastern tropical Pacific Ocean, Paleoceanography, 3:39.CrossRefGoogle Scholar
  33. Margalef, R., 1978, Life-forms of phytoplankton as survival alternatives in an unstable environment, Oceanol. Acta., 1:493.Google Scholar
  34. Martin, J. H., 1990, Glacial-Interglacial CO2 change: The iron hypothesis, Paleooceanography, 5:1.CrossRefGoogle Scholar
  35. Martin, J. H., this volume.Google Scholar
  36. Mclntyre, A., Ruddiman, W. F., and Jantzen, R., 1972, Southward penetrations of the North Atlantic polar front: Faunal and floral evidence of large-scale surface water mass movements over the last 225,000 years, Deep-Sea Res., 19:61.Google Scholar
  37. Milliman, J. D., and Takahashi, K., 1991, Carbonate and opal production and accumulation in the ocean, In: “Global Surficial Geofluxes: Modern to Glacial,” T.M. Usselman, W. Hay, and M. Meybeck, eds., in press.Google Scholar
  38. Mix, A. C., 1989, Pleistocene paleoproductivity: Evidence from organic carbon and foraminiferal species, In: “Productivity of the Ocean: Present and Past,” W.H. Berger, V.S. Smetacek, and G. Wefer, eds., John Wiley & Sons, Chichester.Google Scholar
  39. Mortlock, R. A., Charles, C. D., Froelich, P. N., Zibello, M. A., Saltzman, J., Hays, J. D., and Burckle, L. H., 1991, Evidence for lower productivity in the Antarctic Ocean during the last glaciation, Nature, 351:220.CrossRefGoogle Scholar
  40. Petit, J. R., Mounier, L., Jouzel, J., Korotkevich, Y. S., Kotlyakov, V. I, and Lorius, C., 1990, Palaeoclimatological and chronological implications of the Vostok core dust record, Nature, 343:56.CrossRefGoogle Scholar
  41. Raymo, M. E., Ruddiman, W. F., Shackleton, N. J., and Oppo, D. W., 1990, Evolution of Atlantic-Pacific 13C gradients over the last 2.5 m.y., Earth Planet. Sci. Letters, 97:353.CrossRefGoogle Scholar
  42. Rind, D., and Chandler, M., 1991, Increased ocean heat transports and warmer climate, J. Geophys. Res., 96:7437.CrossRefGoogle Scholar
  43. Ruddiman, W. F., and Mclntyre, A., 1981, The north Atlantic Ocean during the last deglaciation, Palaeogeo. Palaeoclim. Palaeoeco., 35:145.CrossRefGoogle Scholar
  44. Sarmiento, J. L., Toggweiler, J. R., and Najjar, R., 1988, Ocean carbon-cycle dynamics and atmospheric pCO2, Phil. Trans. R. Soc. Lond. A, 325:3.CrossRefGoogle Scholar
  45. Sarnthein, M., Winn, K., and Zahn, R., 1987, Paleoproductivity of oceanic upwelling and the effect on atmospheric CO2 and climatic change during déglaciation times, In: “Abrupt Climatic Change,” W.H. Berger and L.D. Labeyrie, eds., D. Reidel Publ. Co.Google Scholar
  46. Sathyendrenath, S., Gouveia, A. D., Shetya, S. R., Ravindran, P., and Platt, T., 1991, Biological control of surface temperature in the Arabian Sea, Nature, 349:54.CrossRefGoogle Scholar
  47. Shaffer, G., 1989, A model of biogeochemical cycling of phosphorus, nitrogen, oxygen, and sulphur in the ocean: One step toward a global climate model, J. Geophys. Res., 94:1979.CrossRefGoogle Scholar
  48. Simonot, J.-Y., Dollinger, E., and Le Treut, H., 1988, Thermodynamic-biological-optical coupling in the oceanic mixed layer, J. Geophys. Res., 93:8193.CrossRefGoogle Scholar
  49. Slingo, A., 1989, Sensitivity of the earth’s radiation budget to changes in low clouds, Nature, 343:49.CrossRefGoogle Scholar
  50. Smith, S. V., and Mackenzie, F. T., 1987, The ocean as a net heterotrophic system: Implications from the carbon biogeochemical cycle, Global Biogeochem. Cycles, 1:187.CrossRefGoogle Scholar
  51. Suess, E., 1973, Interaction of organic compounds with calcium carbonate — II, Organo-carbonate association in recent sediments, Geochim. Cosmochim. Acta, 37:2435.CrossRefGoogle Scholar
  52. Taylor, A. H., Watson, A. J., Ainsworth, M., Robertson, J. E., and Turner, D. R., 1990, A modelling investigation of the role of phytoplankton in the balance of carbon at the surface of the North Atlantic, Global Biogeochem. Cycles, 5:1.Google Scholar
  53. Thierstein, H. R., Geitsenauer, K. R., and Molfino, B., 1977, Global synchroneity of late Quaternary coccolith datum levels: Validation by oxygen isotopes, Geology, 5:400.CrossRefGoogle Scholar
  54. Tsunogai, S., and Noriki, S., 1991, Paniculate fluxes of carbonate and organic carbon in the ocean, Is the marine biological activity working as a sink of the atmospheric carbon?, Tellus, 43B:256.Google Scholar
  55. Turner, S. M., Malin, G., Liss P. S., Holligan P. M., and Harbour, D. S., 1988, The seasonal variation of dimethylsulfide and dimethylsulfoniopropionate concentrations in nearshore waters, Limnol Oceanogr., 33:364.CrossRefGoogle Scholar
  56. Volk, T., 1989, Sensitivity of climate and atmospheric CO2 to deep-ocean and shallow ocean carbonate burial, Nature, 337:637.CrossRefGoogle Scholar
  57. Walsh, J. J., 1989, How much shelf production reaches the deep sea?, In: “Productivity of the Ocean: Present and Past,” W.H. Berger, V.S. Smetacek, and G. Wefer, eds., John Wiley & Sons, Chichester.Google Scholar
  58. Walsh, J. J., 1991, Importance of the continental margins in the marine biogeochemical cycling of carbon and nitrogen, Nature, 350:53.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • P. M. Holligan
    • 1
  1. 1.Plymouth Marine LaboratoryPlymouthUK

Personalised recommendations