Skip to main content

Reading the Sedimentary Record of the Ocean’s Productivity

  • Chapter
Book cover Primary Productivity and Biogeochemical Cycles in the Sea

Part of the book series: Environmental Science Research ((ESRH,volume 43))

Abstract

The basic controls on ocean productivity are poorly understood both biologically and geologically. In fact, we do not know the global patterns of productivity very well, either with regard to the rates of primary production (that is, the amount of carbon fixed in the photic zone each year), or with regard to the types of primary production (that is, the kinds of organisms involved).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Altenbach, A. V., and Sarnthein, M., 1989, Productivity record in benthic foraminifera, in: “Productivity of the Ocean: Present and Past,” W.H. Berger, V.S. Smetacek, and G. Wefer, eds., John Wiley and Sons, Chichester.

    Google Scholar 

  • Arrhenius, G. O. S., 1952, Sediment cores from the east Pacific, Rep. Swed. Deep Sea Exped. 1947–1948, 5:1.

    Google Scholar 

  • Arrhenius, G. O. S., 1988, Rate of production, dissolution and accumulation of biogenic solids in the ocean, Palaeogeography, Palaeoclimatology, Palaeoecology, 67:119.

    CAS  Google Scholar 

  • Bacastow, R., and Maier-Reimer, E., 1991, Dissolved organic carbon in modeling oceanic new production, Global Biogeochem. Cycles, 5:71.

    CAS  Google Scholar 

  • Banse, K., 1990, Does iron really limit phytoplankton production in the offshore subarctic Pacific?, Limnol. Oceanogr., 35:772.

    CAS  Google Scholar 

  • Banse, K., 1991, Iron availability, nitrate uptake, and exportable new production in the subarctic Pacific, J. Geophys. Res., 96 (Cl):741.

    Google Scholar 

  • Barnola, J. M., Raynaud, D., Korotkevich, Y. S., Lorius, C., 1987, Vostok ice core provides 160,000 year record of atmospheric CO2, Nature, 329:408.

    CAS  Google Scholar 

  • Berger, W. H., 1976, Biogenous deep-sea sediments: production, preservation and interpretation, in: “Treatise on Chemical Oceanography,” Vol.5, J.P. Riley and R. Chester, eds., Academic Press, London.

    Google Scholar 

  • Berger, W. H., 1977, Carbon dioxide excursions and the deep sea record: aspects of the problem, in: “The Fate of Fossil Fuel CO2 in the Oceans,” N.R. Andersen and A. Malahoff, eds., Plenum Press, New York.

    Google Scholar 

  • Berger, W. H., 1978, Sedimentation of deep-sea carbonate: maps and models of variations and fluctuations, J. Foram. Res., 8:286.

    CAS  Google Scholar 

  • Berger, W. H., and Diester-Haass, L., 1988, Paleoproductivity: the benthic/planktonic ratio in foraminifera as a productivity index, Marine Geol., 81:15.

    Google Scholar 

  • Berger, W. H., Finkel, R. C., Killingley, J. S., and Marchig, V., 1983, Glacial-Holocene transition in deep-sea sediments: manganese spike in the east-equatorial Pacific, Nature, 303:231.

    CAS  Google Scholar 

  • Berger, W. H., Fischer, K., Lai, C., and Wu. G., 1987a, Ocean productivity and organic carbon flux. Part I. Overview and maps of primary production and export production, Scripps Institution of Oceanography Ref. 87-30:1.

    Google Scholar 

  • Berger, W. H., and Keir, R. S., 1984, Glacial-Holocene changes in atmospheric CO2 and the deep-sea record, in: “Climate Processes and Climate Sensitivity,” J.E. Hansen and T. Takahashi, eds., Geophys. Monogr. 29, American Geophys. Union, Washington, D.C.

    Google Scholar 

  • Berger, W. H., Killingley, J.S., and Vincent, E., 1987b, Time scale of Wisconsin/Holocene transition: oxygen isotope record in the western equatorial Pacific, Quaternary Res., 28:295.

    CAS  Google Scholar 

  • Berger, W. H., and Roth, P. H., 1975, Oceanic micropaleontology: progress and prospects, Rev. Geophys. Space Phys., 13:561.

    Google Scholar 

  • Berger, W. H., Smetacek, V. S., and Wefer, G., 1989, Ocean productivity and paleoproductivity — an overview, in: “Productivity of the Ocean: Present and Past,” W.H. Berger, V.S. Smetacek, and G. Wefer, eds., John Wiley, Chichester.

    Google Scholar 

  • Berger, W. H., and Wefer, G., 1990, Export production: seasonally and intermittency, and paleoceanographic implications, Global and Planetary Change, 3:245.

    Google Scholar 

  • Berger, W. H., and Wefer, G., On the productivity of the glacial ocean: discussion of the iron hypothesis, Limnology and Oceanography, in press.

    Google Scholar 

  • Betzer, P. R., Showers, W. J., Laws, E. A., Winn, C. D., DiTullio, G. R., and Kroopnick, P. M., 1984, Primary productivity and particle fluxes on a transect of the equator at 153°W in the Pacific Ocean, Deep-Sea Res., 31:1.

    Google Scholar 

  • Boyle, E. A., 1990, Quaternary deepwater paleoceanography, Science, 249:863.

    PubMed  CAS  Google Scholar 

  • Bralower, T. J., and Thierstein, H. R., 1987, Organic carbon and metal accumulation rates in Holocene and mid-Cretaceous sediments: palaeoceanographic significance, in: “Marine Petroleum Source Rocks,” J. Brooks and A.J. Fleet, eds., Geol. Soc. Spec. Publ., 26:345.

    Google Scholar 

  • Bramlette, M. N., 1946, The Monterey Formation of California and the origin of its siliceous rocks, U.S. Geol. Survey Prof. Paper, 212:1.

    Google Scholar 

  • Broecker, W. S., 1973, Factors controlling CO2 content in the oceans and atmosphere, in: “Carbon and the Biosphere,” G.M. Woodwell and E.V. Pecan, eds., AEC Symposium, 30:32.

    Google Scholar 

  • Broecker, W. S., 1982, Ocean chemistry during glacial time, Geochim. Cosmochim. Acta, 46:1689.

    CAS  Google Scholar 

  • Bruland, K. W., Bienfang, P. K., Bishop, J. K. B., Eglinton, G., Ittekkot, V. A. W., Lampitt, R., Sarnthein, M., Thiede, J., Walsh, J. J., and Wefer, G., 1989, Flux to the seafloor, in: “Productivity of the Ocean: Present and Past,” W.H. Berger, V.S. Smetacek, and G. Wefer, eds., John Wiley, Chichester.

    Google Scholar 

  • Burke, S. K., Berger, W. H., Coulbourn, W. T., and Vincent, E., Benthic foraminifera in box core ERDC 112, Ontong Java Plateau, J. Foram. Res., in press.

    Google Scholar 

  • Byrne, J. V., and Emery, K. O., 1960, Sediments of the Gulf of California, GeoL Soc. America Bulletin, 71:983.

    CAS  Google Scholar 

  • Calvert, S. E., 1966, Accumulation of diatomaceous silica in the sediments of the Gulf of California, Geol. Soc. America Bull, 77:569.

    CAS  Google Scholar 

  • Calvert, S. E., 1974, Deposition and diagenesis of silica in marine sediments, in: “Pelagic Sediments on Land and Under the Sea,” K.J. Hsü and H. Jenkyns, eds., Spec. Publ. Internat. Assoc. Sedimentologists, 1:273.

    Google Scholar 

  • Calvert, S. E., 1987, Oceanographic controls on the accumulation of organic matter in marine sediments, in: “Marine Petroleum Source Rocks,” J. Brooks and A.J. Fleet, eds., Geol. Soc. Spec. Publ., 26:137.

    Google Scholar 

  • Christensen, J. P., Murray, J. W., Devol, A.H., and Codispoti, L. A., 1987, Denitrification in continental shelf sediments has major impact on the oceanic nitrogen budget, Global Biogeochem. Cycles, 1:97.

    CAS  Google Scholar 

  • CLIMAP Project Members, 1976, The surface of the ice-age earth, Science, 191:1131.

    Google Scholar 

  • Codispoti, L. A., 1989, Phosphorus vs. nitrogen limitation of new and export production, in: “Productivity of the Ocean: Present and Past,” W.H. Berger, V.S. Smetacek, and G. Wefer, eds., Wiley-Interscience, Chichester.

    Google Scholar 

  • DeMaster, D.J., 1981, The supply and accumulation of silica in the marine environment, Geochim. Cosmochim. Acta, 45:1715.

    CAS  Google Scholar 

  • Desrosières, R., 1969, Surface macroplankton of the Pacific Ocean along the equator, Limnol. Oceanogr., 14:626.

    Google Scholar 

  • Douglas, R. G., and Woodruff, F., 1981, Deep sea benthic foraminifera, in: “The Sea, vol 7, the Oceanic Lithosphere,” C. Emiliani, ed., Wiley-Interscience, New York.

    Google Scholar 

  • Elderfield, H., 1990, Tracers of ocean paleoproductivity and paleochemistry: an introduction, Paleoceanogr., 5:711.

    Google Scholar 

  • Emerson, S., Fischer, K., Reimers, C., and Heggie, D., 1985, Organic carbon dynamics and preservation in deep-sea sediments, Deep-Sea Res., 32:1.

    CAS  Google Scholar 

  • Emerson, S., and Hedges, J. I., 1988, Processes controlling the organic carbon content of open ocean sediments, Palaeogeogr., Palaeoclimat., Palaeoecol., 3:621.

    Google Scholar 

  • Eppley, R. W., and Peterson, B. J., 1979, Particulate organic matter flux and planktonic new production in the deep ocean, Nature, 282:677.

    Google Scholar 

  • Finney, B. P., Lyle, M. W., and Heath, G. R., 1988, Sedimentation at MANOP Site H (eastern equatorial Pacific) over the past 400,000 years: climatically induced redox variations and their effects on transition metal cycling, Paleoceanogr., 3:169.

    Google Scholar 

  • Froelich, P. N., Klinkhammer, G. P., Bender, M. L., Luedtke, N. A., Heath, G. R., Cullen, D., Dauphin, P., Hammond, D., Hartman, B., and Maynard, V., 1979, Early oxidation of organic matter in pelagic sediments of the eastern equatorial Atlantic: suboxic diagenesis, Geochim. Cosmochim. Acta., 43:1075.

    CAS  Google Scholar 

  • Ganssen, G., and Sarnthein, M., 1983, Stable-isotope composition of foraminifers: the surface and bottom water record of coastal upwelling, in: “Coastal Upwelling, its Sediment Record. Part A: Responses of the Sedimentary Regime to Present Coastal Upwelling,” E. Suess and J. Thiede, eds., Plenum Press, New York.

    Google Scholar 

  • Goll, R. M., and Bjoerklund, K. R., 1971, Radiolaria in surface sediments of the North Atlantic Ocean, Micropaleontology, 17:434.

    Google Scholar 

  • Goll, R. M., and Bjoerklund, K. R., 1974, Radiolaria in surface sediments of the South Atlantic, Micropaleontology, 20:38.

    Google Scholar 

  • Haake, F.-W., Coulbourn, W. T., and Berger, W. H., 1982, Benthic foraminifera: depth distribution and redeposition, in: “Geology of the Northwest African Continental Margin,” U. von Rad, K. Hinz, M. Sarnthein, and E. Seibold, eds., Springer Verlag, Heidelberg.

    Google Scholar 

  • Hays, J.D., 1967, Quaternary sediments of the Antarctic Ocean, Progress in Oceanography, 4:117.

    Google Scholar 

  • Heath, G. R., 1974, Dissolved silica and deep-sea sediments, in: “Studies in Paleo-Oceanography,” W.W. Hay, ed., Soc. Econ. Paleont. and Mineral., Spec. Pub., 20:77.

    Google Scholar 

  • Heath, G. R., Moore, T. C., and Dauphin, J. P., 1977, Organic carbon in deep-sea sediments, in: “The Fate of Fossil Fuel CO2 in the Oceans,” N.R. Andersen and A. Malahoff, eds., Plenum, New York.

    Google Scholar 

  • Hebbeln, D., Wefer, G., and Berger, W.H., 1990, Pleistocene dissolution fluctuations from apparent depth of deposition in Core ERDC127P, west-equatorial Pacific, Marine Geology, 92:165.

    Google Scholar 

  • Herbert, T. S., Curry, W. B., Barron, J. A., Codispoti, L. A., Gersonde, R., Keir, R. S., Mix, A. C., Mycke, B., Schrader, H., Stein, R., and Thierstein, H. R., 1989, Geological Reconstructions of Marine Productivity, in: “Productivity of the Ocean: Present and Past,” W.H. Berger, V.S. Smetacek, and G. Wefer, eds., John Wiley, Chichester.

    Google Scholar 

  • Herguera, J. C., Deep-sea benthic foraminifera and biogenic opal: glacial to postglacial productivity changes in the west-equatorial Pacific, Marine Micropal., in press.

    Google Scholar 

  • Herguera, J. C., and Berger, W. H., Paleoproductivity: glacial to postglacial change in the western equatorial Pacific, from benthic foraminifera, Geology, in press.

    Google Scholar 

  • Herguera, J. C., Stott, L., and Berger, W. H., Glacial deep-water properties in the west-equatorial Pacific: bathyal thermocline near 2000 m depth, Marine Geol., in press.

    Google Scholar 

  • Johnson, T. C., Hamilton, E. L., and Berger, W. H., 1977, Physical properties of calcareous ooze: control by dissolution at depth, Marine GeoL, 24:259.

    CAS  Google Scholar 

  • Keir, R. S., 1988, On the late Pleistocene ocean geochemistry and circulation, Paleoceanogr., 3:413.

    Google Scholar 

  • Keir, R. S., 1990, Reconstructing the ocean carbon system variation during the last 150,000 years according to the Antarctic nutrient hypothesis, Paleoceanogr., 5:253.

    Google Scholar 

  • Kolbe, R. W., 1955, Diatoms from equatorial Atlantic cores, Repts. Swed. Deep-Sea Exped., 7(3):149.

    Google Scholar 

  • Koblentz-Mishke, O. I., Volkovinsky, V. V., and Kabanova, J. G., 1970, Plankton primary production of the world ocean, in: “Scientific Exploration of the South Pacific,” W. Wooster, ed., National Academy of Sciences, Washington, D.C.

    Google Scholar 

  • Kutzbach, J. E., 1989, Possible effects of orbital variations on past sources and transports of eolian material: estimates from general circulation model experiments, in: “Paleoclimatology and Paleometeorology: Modern and Past Patterns of Global Atmospheric Transport,” M. Leinen and M. Sarnthein, eds., Kluwer Academic, Dordrecht.

    Google Scholar 

  • Lange, C. B., and Berger, W. H., 1991, Diatoms fail to indicate the increased glacial productivity in the western equatorial, Pacific. Geol. Soc. America, Fall Meeting 1991, Abstracts.

    Google Scholar 

  • Lange, C. B., Burke, S. K., and Berger, W. H., 1990, Biological production off Southern California is linked to climatic change, Climatic Change, 16:319.

    Google Scholar 

  • Lapenis, A. G., Os’kina, N. S., Barash, M. S., Biyum, N. S., and Vasileva, Ye. V., 1990, Late Quaternary variations in the productivity of the ocean’s biota, Okeanologiya, 30:93. [In Russian].

    Google Scholar 

  • Leinen, M., 1979, Biogenic silica accumulation in the central equatorial Pacific and its implications for Cenozoic paleoceanography: summary, GeoL Soc. America Bull., Part I, 90:801.

    CAS  Google Scholar 

  • Leinen, M., Cwienk, D., Heath, G. R., Biscaye, P., Kolla, V., Thiede, J., and Dauphin, J. P., 1986, Distribution of biogenic silica and quartz in recent deep-sea sediments, Geology, 14:199.

    CAS  Google Scholar 

  • Lisitzin, A. P., 1967, Basic relationships in distribution of modern siliceous sediments and their connection with climatic zonation, Internat. Geol. Rev., 9:631 (transi, fr. Russian).

    Google Scholar 

  • Lisitzin, A. P., 1972. Sedimentation in the world ocean, Soc. Econ. Paleont. Mineral Spec. Publ., 17:1.

    Google Scholar 

  • Loubere, P., 1987, Late Pliocene variations in the carbon isotope values of north Atlantic benthic foraminifera: biotic control of the isotope record, Mar. Geol, 76:45.

    CAS  Google Scholar 

  • Loubere, P., 1991, Deep-sea benthic foraminiferal assemblage response to surface ocean productivity gradient: a test, Paleoceanogr., 6:193.

    Google Scholar 

  • Lutze, G. F., Pflaumann, U., and Weinholz, P., 1986, Jungquartäre Fluktuationen der benthischen Foraminiferenfaunen in Tiefsee-Sedimenten vor NW-Afrika — eine Reaktion auf Produktivitätsänderungen im Oberflächenwasser, Meteor Forschungs-Ergebnisse, Reihe C., 40:163.

    Google Scholar 

  • Lyle, M., 1988, Climatically forced organic carbon burial in equatorial Atlantic and Pacific oceans, Nature, 335:529.

    CAS  Google Scholar 

  • Lyle, M., Murray, D. W., Finney, B. P., Dymond, J., Robbins, J. M., and Brooksforce, K., 1988, The record of late Pleistocene biogenic sedimentation in the eastern tropical Pacific Ocean, Paleoceanogr., 3:39.

    Google Scholar 

  • Martin, J. H., 1990, Glacial-interglacial CO2 change: the iron hypothesis, Paleoceanogr., 5:1.

    Google Scholar 

  • Martin, J. H. and Fitzwater, S. E., 1988, Iron deficiency limits phytoplankton growth in north-east Pacific subarctic, Nature, 331:341.

    CAS  Google Scholar 

  • Martin, J. H., Gordon, R. M., and Fitzwater, S. E., 1990, Iron in Antarctic waters, Nature, 345:156.

    CAS  Google Scholar 

  • Mikkelsen, N., 1979, Diatoms in equatorial deep-sea sediments: sedimentation and dissolution over the last 20,000 years, Nova Hedwigia, 64:489.

    Google Scholar 

  • Milliman, J. D., and Takahashi, K., Carbonate and opal production and accumulation in the ocean, in: “Global Surficial Geofluxes: Modern to Glacial,” W. Hay, M. Meybeck, and T. Usselman, eds., National Research Council, Washington, D.C., in press.

    Google Scholar 

  • Mix, A. C., 1989a, Pleistocene paleoproductivity: evidence from organic carbon and foraminiferal species, in: “Productivity of the Ocean: Present and Past,” W.H. Berger, V.S., Smetacek, and G. Wefer, eds., John Wiley, Chichester.

    Google Scholar 

  • Mix, A. C., 1989b, Influence of productivity variations on long term atmospheric CO2, Nature, 337:541.

    CAS  Google Scholar 

  • Molfino, B., and McIntyre, A., 1991, Precessional forcing of nutricline dynamics in the equatorial Atlantic, Science, 249:766.

    Google Scholar 

  • Mortlock, R. A., Charles, C. D., Froelich, P. N., Zibello, M. A., Saltzman, J., Hays, J. D., and Burckle, L. H., 1991, Evidence for lower productivity in the Antarctic Ocean during the last glaciation, Nature, 351:220.

    Google Scholar 

  • Müller, P. J., Erlenkeuser, H., and von Grafenstein, R., 1983, Glacial-interglacial cycles in oceanic productivity inferred from organic carbon contents in eastern North Atlantic sediment cores, in: “Coastal Upwelling, its Sedimentary Record. Part B: Sedimentary Records of Ancient Coastal Upwellings,” J. Thiede and E. Suess, eds., Plenum Press, New York.

    Google Scholar 

  • Müller, P. J., and Suess, E., 1979, Productivity, sedimentation rate, and sedimentary organic matter in the oceans — I. Organic carbon preservation, Deep-Sea Res., 26A:1347.

    Google Scholar 

  • Parker, F. L., 1973, Living planktonic foraminifera from the Gulf of California, J. Foram. Res., 3:70.

    Google Scholar 

  • Parker, F. L., and Berger, W. H., 1971, Faunal and solution patterns of planktonic foraminifera in surface sediments of the South Pacific, Deep-Sea Res., 18:73.

    Google Scholar 

  • Pedersen, T. F., 1983, Increased productivity in the eastern equatorial Pacific during the last glacial maximum (19,000 to 14,000 yr B.P.), Geology, 11:16.

    CAS  Google Scholar 

  • Pedersen, T. F., and Calvert, S. E., 1990, Anoxia vs. productivity: what controls the formation of organic-carbon-rich sediments and sedimentary rocks?, Amer. Assoc. Petrol Geol. Bull., 74:454.

    CAS  Google Scholar 

  • Petit, J. R., Mounier, L., Jouzel, J., Korotkevich, Y. S., Kotlyakov, V. I., and Lorius, C., 1990, Palaeoclimatological and chronological implications of the Vostok core dust record, Nature, 343:56.

    Google Scholar 

  • Phleger, F. B., Parker, F. L., and Peirson, J. F., 1953, North Atlantic Foraminifera, Sediment cores from the North Atlantic Ocean, Swedish Deep-Sea Exped. Repts., 7:1.

    Google Scholar 

  • Pisias, N. G., and Rea, D. K., 1988, Late Pleistocene paleoclimatology of the central equatorial Pacific: sea surface response to the Southeast Trade Winds, Paleoceanogr., 3:21.

    Google Scholar 

  • Platt, T., and Li, W. K. W., eds., 1986, “Photosynthetic Picoplankton,” Canadian Bulletin of Fisheries and Aquatic Sciences, 214:1.

    Google Scholar 

  • Prahl, F. G., and Muelhausen, L. A., 1989, Lipid biomarkers as geochemical tools for paleoceanographic study, in: “Productivity of the Ocean: Present and Past,” W.H. Berger, V.S. Smetacek, and G. Wefer, eds., John Wiley, Chichester.

    Google Scholar 

  • Prahl, F. G., Muelhausen, L. A., and Lyle, M., 1989, An organic geochemical assessment of oceanographic conditions at MANOP Site C over the past 26,000 years, Paleoceanogr., 4:495.

    Google Scholar 

  • Pratje, O., 1951, Die Kieselsäureorganismen des Südatlantischen Ozeans als Leitformen in den Bodenablagerungen, Deut. Hydr. Zeitschr., 4:1.

    Google Scholar 

  • Prell, W. L., and Curry, W. B., 1980, Faunal and isotopic indices of monsoonal upwelling: Western Arabian Sea, Oceanol. Acta., 4:91.

    Google Scholar 

  • Premuzic, E. T., Benkovitz, C. M., Gaffney, J. S., and Walsh, J. J., 1982, The nature and distribution of organic matter in the surface sediments of world oceans and seas, Org. Geochem., 4:63.

    CAS  Google Scholar 

  • Price, B. A., 1988, “Equatorial Pacific Sediments: Studies on Amino Acid, Organic Matter, and Manganese Deposition,” Ph.D. thesis, University of California, San Diego.

    Google Scholar 

  • Rea, D. K., Chambers, L. W., Chuey, J. M., Janecek, T. R., Leinen, M., and Pisias, N. G., 1986, A 420,000-year record of cyclicity in oceanic and atmospheric processes from the eastern equatorial Pacific, Paleoceanogr., 1:577.

    Google Scholar 

  • Reimers, C. E., 1989, Control of benthic fluxes by particulate supply, in: “Productivity of the Ocean: Present and Past,” W. H. Berger, V. S. Smetacek, and G. Wefer, eds., John Wiley, Chichester.

    Google Scholar 

  • Riedel, W. R., 1959, Siliceous organic remains in pelagic sediments, Soc. Econ. Paleont. Mineral Spec. Pub., 7:80.

    Google Scholar 

  • Riedel, W. R., and Funnell, B. M., 1964, Tertiary sediment cores and microfossils from the Pacific Ocean floor, Quat. J. Geol Soc. London, 120:305.

    Google Scholar 

  • Romankevich, E. A., 1984, “Geochemistry of Organic Matter in the Ocean,” Springer Verlag, Heidelberg.

    Google Scholar 

  • Rowe, G. T., 1983, Biomass and production of the deep-sea macrobenthos, in: “The Sea, Vol. 8, Deep-Sea Biology,” G. T. Rowe, ed., Wiley Interscience, New York.

    Google Scholar 

  • Sancetta, C., 1979, Oceanography of the North Pacific during the last 18,000 years: evidence from fossil diatoms, Marine Micropal., 4:103.

    Google Scholar 

  • Sarnthein, M., Thiede, J., Pflaumann, U., Erlenkeuser, H., Fütterer, D., Koopmann, B., Lange, H. and Seibold, E., 1982, Atmospheric and oceanic circulation patterns off Northwest Africa during the past 25 million years, in: “Geology of the Northwest African Continental Margin,” U. von Rad, K. Hinz, M. Sarnthein, and E. Seibold, eds., Springer Verlag, Heidelberg.

    Google Scholar 

  • Sarnthein, M., Winn, K., and Zahn, R., 1987, Paleoproductivity of oceanic upwelling and the effect on atmospheric CO2 and climatic change during déglaciation times, in: “Abrupt Climatic Change — Evidence and Implications,” W.H. Berger and L.D. Labeyrie, eds., Reidel, Dordrecht.

    Google Scholar 

  • Sarnthein, M., Winn, K., Duplessy, J.-C., and Fontugne, M. R., 1988, Global variations of surface ocean productivity in low and mid latitudes: influence on CO2 reservoirs of the deep ocean and atmosphere during the last 21,000 years, Paleoceanogr., 3:361.

    Google Scholar 

  • Schiffelbein, P., and Dorman, L., 1986, Spectral effects of time-depth nonlinearities in deep sea sediment records: a deconvolution technique for realigning time and depth scales, J. Geophys. Res., 91 (B3):3821.

    Google Scholar 

  • Schrader, H., and Sorknes, R., 1991, Peruvian coastal upwelling: Late Quaternary productivity changes revealed by diatoms, Mar. Geol., 97:233.

    Google Scholar 

  • Shackleton, N. J., 1977, Carbon-13 in Uvigerina: tropical rainforest history and the equatorial Pacific carbonate dissolution cycles, in: “The Fate of Fossil Fuel CO2 in the Oceans,” N.R. Andersen, and A. Malahoff, eds., Plenum Press, New York.

    Google Scholar 

  • Shackleton, N. J., Hall, M. A., Line, J., and Shuxi, C., 1983, Carbon isotope data in Core V19-30 confirm reduced carbon dioxide concentration in the ice age atmosphere, Nature, 306:319.

    CAS  Google Scholar 

  • Shaffer, G., 1989, A model of biogeochemical cycling of phosphorus, nitrogen, oxygen, and sulphur in the ocean: one step toward a global climate model, J. Geophys. Res., 94 (C2): 1979.

    CAS  Google Scholar 

  • Somayajulu, B. L. K., Sharma, P., and Berger, W. H., 1984. 10Be, 14C., U-Th decay series nuclides and 18O in a box core from the central North Atlantic, Marine Geol., 54:169.

    CAS  Google Scholar 

  • Stein, R., 1991, “Accumulation of Organic Carbon in Marine Sediments,” Springer Verlag, Berlin.

    Google Scholar 

  • Suess, E., 1980, Paniculate organic carbon flux in the oceans — surface productivity and oxygen utilization, Nature, 288:260.

    CAS  Google Scholar 

  • Toggweiler, J. R., 1989, Is the downward dissolved organic matter (DOM) flux important in carbon transport?, in: “Productivity of the Ocean: Present and Past,” W.H. Berger, V.S. Smetacek, and G. Wefer, eds., John Wiley, Chichester.

    Google Scholar 

  • van der Zwaan, G. J., Jorissen, F. J., and de Stigter, H. C., 1990, The depth dependency of planktonic/benthic foraminiferal ratios: constraints and applications, Marine Geol., 95:1.

    Google Scholar 

  • Vincent, E., and Berger, W. H., 1981, Planktonic foraminifera and their use in paleoceanography, in: “The Sea, Vol. 7, the Oceanic Lithosphere,” C. Emiliani, ed., Wiley-Interscience, New York.

    Google Scholar 

  • Walsh, J. J., 1989, How much shelf production reaches the deep sea?, in: “Productivity of the Ocean: Present and Past,” W.H. Berger, V.S. Smetacek, and G. Wefer, eds., John Wiley, Chichester.

    Google Scholar 

  • Wefer, G., 1989, Particle flux in the ocean: effects of episodic production, in: “Productivity of the Ocean: Present and Past,” W.H. Berger, V.S. Smetacek, and G. Wefer, eds., John Wiley, Chichester.

    Google Scholar 

  • Wu, G., and Berger, W. H., 1991, Pleistocene δ18O records from Ontong-Java Plateau: effects of winnowing and dissolution, Marine Geol., 96:193.

    CAS  Google Scholar 

  • Wu, G., Herguera, J. C., and Berger, W. H., 1990, Differential dissolution: modification of late Pleistocene oxygen isotope records in the western equatorial Pacific. Paleoceanogr., 5:581.

    Google Scholar 

  • Zahn, R., Winn, K., and Sarnthein, M., 1986, Benthic foraminiferal δ13C and accumulation rates of organic carbon: Uvigerina peregrina group and Cibicidoides wuellerstorfi, Paleoceanogr., 1:27.

    Google Scholar 

  • Zhuang, G., Duce, R. A., and Kester, D. R., 1990, The dissolution of atmospheric iron in surface water of the open ocean, J. Geophys. Res., 95 (C9): 16,207.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

Berger, W.H., Herguera, J.C. (1992). Reading the Sedimentary Record of the Ocean’s Productivity. In: Falkowski, P.G., Woodhead, A.D., Vivirito, K. (eds) Primary Productivity and Biogeochemical Cycles in the Sea. Environmental Science Research, vol 43. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0762-2_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0762-2_24

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-0764-6

  • Online ISBN: 978-1-4899-0762-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics