Grazing, Temporal Changes of Phytoplankton Concentrations, and the Microbial Loop in the Open Sea

  • Karl Banse
Part of the Environmental Science Research book series (ESRH, volume 43)

Abstract

With the advent of maps of chlorophyll distribution in the world ocean (Feldman et al., 1989; Lewis, this volume), parochial questions can be asked on a global basis: (1) where, (2) when, and (3) why does phytoplankton occur in the open sea, and (4) how much is found? The first and fourth questions will be addressed briefly at the outset. The paper will treat the second and third questions at length, emphasizing the annual and seasonal time scales. Grazing will be shown to be a key variable that largely has been underrated. In addition to affecting phytoplankton, grazing will be recognized as central to the supply of substrate for the microbial loop.

Keywords

Mixed Layer Dissolve Organic Matter Dissolve Organic Matter Phytoplankton Growth Euphotic Zone 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alldredge, A. L., and Gotschalk, C.C., 1989, Direct observations of the mass flocculation of diatom blooms: Characteristics, settling velocities and formation of diatom aggregates, Deep-Sea Res., 36:159.CrossRefGoogle Scholar
  2. Anderson, G. C., Lam, R. K., Booth, B. C., and Glass, J. M., 1977, A description and numerical analysis of the factors affecting processes of production in the Gulf of Alaska, NOAA 03-5-022-67 Environmental Assessment Alaskan Continental Shelf, VII:477.Google Scholar
  3. Anderson, G. C., and Munson, R. E., 1972, Primary productivity studies using merchant vessels in the North Pacific Ocean, in: “Biological Oceanography of the Northern North Pacific Ocean,” A.Y. Takenouti, ed., Idemitsu Shoten, Tokyo.Google Scholar
  4. Andersson, A., Lee, C., Azam, F., and Hagström, Å, 1985, Release of amino acids and inorganic nutrients by heterotrophic marine microflagellates, Mar. Ecol. Prog. Ser., 23:99.CrossRefGoogle Scholar
  5. Apstein, C., 1905, Die Schätzungsmethode in der Planktonforschung, Wiss. Meeresunters., Abt. Kiel, N.F. 8:103.Google Scholar
  6. Apstein, C., 1911, Biologische Studie über Ceratium tripos var. subsalsa Ostf, Wiss. Meeresunters., Abt. Kiel, N.F. 12:137.Google Scholar
  7. Azam, F., Fenchel, T., Field, J. G., Gray, J. S., Meyer-Reil, L. A., and Thingstad, F., 1983, The ecological role of water-column microbes in the sea, Mar. Ecol. Prog. Ser., 10:257.CrossRefGoogle Scholar
  8. Azam, F., Cho, B. C., Smith, D. C., and Simon, M., 1990, Bacterial cycling of matter in the pelagic zone of aquatic ecosystems, in: “Large Lakes,” M.M. Tilzer, and C. Serruya, eds., Springer-Verlag, Berlin.Google Scholar
  9. Bainbridge, R., 1953, Studies on the relationships of Zooplankton and phytoplankton, J. Mar. Biol. Ass. U.K., 32:385.CrossRefGoogle Scholar
  10. Banse, K., 1982a, Cell volumes, maximal growth rates of unicellular algae and ciliates, and the role of ciliates in the marine pelagial, Limnol. Oceanogr., 27:1059.CrossRefGoogle Scholar
  11. Banse, K., 1982b, Mass-scaled rates of respiration and intrinsic growth in very small invertebrates, Mar. Ecol Prog. Ser., 9:281.CrossRefGoogle Scholar
  12. Banse, K., 1982c, Experimental marine ecosystem enclosures in a historial perspective, in: “Marine Mesocosms: Biological and Chemical Research in Experimental Ecosytems,” G.D. Grice, and M.R. Reeve, eds., Springer-Verlag, New York.Google Scholar
  13. Banse, K., 1990, New views on the degradation and disposition of organic particles as collected by sediment traps in the open sea, Deep-Sea Res., 37:1177.CrossRefGoogle Scholar
  14. Banse, K., Rates of phytoplankton cell division in the field and in iron enrichment experiments, Limnol. Oceanogr, 36(8), in press.Google Scholar
  15. Banse, K., and Yong, M., 1990, Sources of variability in satellite-derived estimates of phytoplankton production in the eastern tropical Pacific, J. Geophys. Res., 95:7201.CrossRefGoogle Scholar
  16. Beklemishev, C. W., 1957, The spatial interrelationship of marine zoo-and phytoplankton (In Russian) Tr. Inst. Okeanol., Akad. NaukSSSR, 20:253. Translation in: “Marine Biology,” B.N. Nikitin, ed., Am. Inst. Biol. Sci., Washington, D.C. (1959).Google Scholar
  17. Bienfang, P. K., and Szyper, J. P., 1981, Phytoplankton dynamics in the subtropical Pacific Ocean off Hawaii, Deep-Sea Res., 28:981.CrossRefGoogle Scholar
  18. Bigelow, H.B., 1926, Plankton of the offshore waters of the Gulf of Maine, Bull. U.S. Bureau Fish., 40:1.Google Scholar
  19. Bjørnsen, P. K., 1988, Phytoplankton exudation of organic matter: Why do healthy cells do it?, Limnol. Oceanogr., 33:151.CrossRefGoogle Scholar
  20. Brandt, K., 1925, Victor Hensen und die Meeresforschung, Wiss. Meeresunters., Abt. Kiel, N.F. 20:49.Google Scholar
  21. Braarud, T., 1935, The “Øst” Expedition to the DenmarkStrait 1929. II. The phytoplankton and its conditions of growth, Norske Vidensk.-Akad. Oslo, Hvalrådets Skr. 10.Google Scholar
  22. Capriulo, G. M., 1990, Feeding-related ecology of marine protozoa, in: “Ecology of Marine Protozoa,” G.M. Capriulo, ed., Oxford University Press, Oxford.Google Scholar
  23. Caron, D. A., Goldman, J. C., Andersen, O. K., and Dennett, M. R., 1985, Nutrient cycling in a microflagellate food chain: II. Population dynamics and carbon cycling, Mar. Ecol. Prog. Ser., 24:243.CrossRefGoogle Scholar
  24. Cho, B. C., and Azam, F., 1990, Biogeochemical significance of bacterial biomass in the ocean’s euphotic zone, Mar. Ecol. Prog. Ser., 63:253.CrossRefGoogle Scholar
  25. Clemons, M. J., and Miller, C. B., 1984, Blooms of large diatoms in the oceanic, subarctic Pacific, Deep-Sea Res., 31:85.CrossRefGoogle Scholar
  26. Cohen, E. B., Grosslein, M. D., Sissenwine, M. P., Steimle, F., and Wright, W. R., 1982, Energy budget of Georges Bank, Can. Spec. Publ. Fish. Aquat. Sci., 59:95.Google Scholar
  27. Cole, J., J., Findlay, S., and Pace, M. L., 1988, Bacterial production in fresh and saltwater ecosystems: A cross-system overview, Mar. Ecol. Prog. Ser., 43:1.CrossRefGoogle Scholar
  28. Copping, A. E., and Lorenzen, C. J., 1980, Carbon budget of a marine phytoplankton-herbivore system with carbon-14 as a tracer, Limnol. Oceanogr., 25:873.CrossRefGoogle Scholar
  29. Cowles, T. J., Olson, R. J., and Chisholm, S. W., 1988, Food selection by copepods: Discrimination on the basis of food quality, Mar. Biol., 100:41.CrossRefGoogle Scholar
  30. Cullen, J. J., Lewis, M. R., Davis, C. O., and Barber, R. T., Photosynthetic characteristics and estimated growth rates indicate grazing is the proximate control of primary production in the equatorial Pacific, J. Geophys. Res., in press.Google Scholar
  31. Cushing, D. H., 1955, Production and a pelagic fishery, Fish. Invest. Lond., Ser. II, 18(7):1.Google Scholar
  32. Cushing, D. H., 1958, The effect of grazing in reducing the primary production: A review, Rapp. Cons. Intern. Expl. Mer., 144:149.Google Scholar
  33. Cushing, D. H., 1959a, On the nature of production in the sea, Fish. Invest. London, Ser. II, 22(6):1.Google Scholar
  34. Cushing, D. H., 1959b, The seasonal variation in oceanic production as a proplem in population dynamics, J. Cons. Int. Expl. Mer., 23:455.Google Scholar
  35. Cushing, D. H., 1963, Studies on a Calanus patch. V. The production cruises in 1954: Summary and conclusions, J. Mar. Biol. Ass. U.K., 43:387.CrossRefGoogle Scholar
  36. Cushing, D. H., 1980, Production in the central gyres of the Pacific, Intergov. Oceanogr. Comm., Techn. Ser., 21:31.Google Scholar
  37. Dagg, M. J., 1974, Loss of prey body contents during feeding by an aquatic predator, Ecology, 55:903.CrossRefGoogle Scholar
  38. Dandonneau, Y., and Gohin, F., 1984, Meridional and seasonal variations of the sea surface chlorophyll concentration in the southwestern tropical Pacific (14 to 32°S, 160 to 175°E), Deep-Sea Res., 31:1377.CrossRefGoogle Scholar
  39. Davis, C. S., 1987, Components of the Zooplankton production cycle in the temperate ocean, 7. Mar. Res., 45:947.CrossRefGoogle Scholar
  40. de Baar, H. J. W., Buma, A. G. J., Nolting, R. F., Cadée, G. C., Jacques, G., and Tréguer, P. J., 1990, On iron limitation of the Southern Ocean: experimental observations in the Weddell and Scotia Seas, Mar. Ecol. Prog. Ser., 65:105.CrossRefGoogle Scholar
  41. Ducklow, H. W., 1983, Production and fate of bacteria in the oceans, BioScience, 33:494.CrossRefGoogle Scholar
  42. Ducklow, H., W., 1991, The passage of carbon through microbial foodwebs: Results from flow networkmodels, Mar. Microb. Food Webs, 5:129.Google Scholar
  43. Ducklow, H. W., Fasham, M. J. R., and Vézina, A. F., 1989, Derivation and analysis of flow networks for open ocean plankton systems, in: “Coastal and Estuarine Studies,” F. Wulff, J.G. Field, and K.H. Mann, eds., Springer-Verlag, Berlin.Google Scholar
  44. Dugdale, R. C., and Goering, J. J., 1967, Uptake of new and regenerated forms of nitrogen in primary productivity, Limnol. Oceanogr., 12:196.CrossRefGoogle Scholar
  45. El-Sayed, S.Z., 1967, On the productivity of the southwest Atlantic Ocean and the waters west of the Antarctic Peninsula, Antarct. Res. Ser., 11:15.CrossRefGoogle Scholar
  46. El-Sayed, S. Z., 1988, Productivity of the Southern Ocean: A closer look, Comp. Biochem. Physiol., 90B:489.Google Scholar
  47. Eppley, R. W., 1972, Temperature and phytoplankton growth in the sea, U.S. Fish. Bull., 70:1063.Google Scholar
  48. Eppley, R. W., Renger, E. H., and Harrison, W. G., 1979, Nitrate and phytoplankton production in southern California coastal waters, Limnol. Oceanogr., 24:483.CrossRefGoogle Scholar
  49. Eppley, R. W., Horrigan, S. G., Fuhrman, J. A., Brooks, E. R., Price, C. C., and Sellner, K., 1981, Origins of dissolved organic matter in southern California coastal waters: Experiments on the role of Zooplankton, Mar. Ecol. Prog. Ser., 6:149.CrossRefGoogle Scholar
  50. Evans, G. T., and Parslow, J. S., 1985, A model of annual plankton cycles, Biol. Oceanogr., 3:327.Google Scholar
  51. Evans, G. T., Steele, J. H., and Kullenberg, G. E. B., 1977, A preliminary model of shear diffusion and plankton populations, Scot. Fish. Res. Rept., 9.Google Scholar
  52. Fasham, M. J. R., Ducklow, H. W., and McKelvie, S. M., 1990, A nitrogen-based model of plankton dynamics in the oceanic mixed layer, J. Mar. Res., 48:591.CrossRefGoogle Scholar
  53. Fasham, M. J. R., Holligan, P. M., and Pugh, P. R., 1983, The spatial and temporal development of the spring phytoplankton bloom in the Celtic sea, April 1979, Prog. Oceanogr., 12:87.CrossRefGoogle Scholar
  54. Feldman, G., and 12 co-authors, 1989, Ocean color, Availability of the Global Data Set, EOS (Tr. Am. Geophys. U.), 70:634, 640.Google Scholar
  55. Fenchel, T., 1980, Suspension feeding in ciliated protozoa: Feeding rates and their ecological significance, Microb. Ecol., 6:13.CrossRefGoogle Scholar
  56. Fenchel, T., 1982, Ecology of heterotrophic microflagellates, II. Bioenergetics and growth, Mar. Ecol. Prog. Ser., 8:225.CrossRefGoogle Scholar
  57. Fenchel, T., 1988, Marine plankton food chains, Ann. Rev. Ecol. Syst., 19:19.CrossRefGoogle Scholar
  58. Fleming, R. H., 1939, The control of diatom populations by grazing, J. Cons. Int. Expl. Mer, 14:210.Google Scholar
  59. Frost, B. W., 1980, The inadequacy of body size as an indicator of niches in the Zooplankton, in: “Evolution and Ecology of Zooplankton Communities,” W. C. Kerfoot, ed., University Press of New England, Hanover.Google Scholar
  60. Frost, B. W., 1987, Grazing control of phytoplankton stoc&in the open subarctic Pacific Ocean: A model assessing the role of mesozooplankton, particularly the large calanoid copepods Neocalanus spp, Mar. Ecol. Prog. Ser., 39:49.CrossRefGoogle Scholar
  61. Frost, B. W., The role of grazing in nutrient-rich areas of the open sea, Limnol. Oceanogr., 36(8), in press.Google Scholar
  62. Fuhrman, J. A., Sleeter, T. D., Carlson, C. A., and Proctor, L. M., 1989, Dominance of bacterial biomass in the Sargasso Sea and its ecological implications, Mar. Ecol. Prog. Ser., 57:207.CrossRefGoogle Scholar
  63. Fukuchi, M., 1980, Phytoplankton chlorophyll stocks in the Antarctic Ocean, J. Oceanogr. Soc. Japan, 36:73.CrossRefGoogle Scholar
  64. Gran, H. H., 1912, Pelagic plant life, Ch. VI, in: “The Depths of the Ocean,” J. Murray, and J. Hjort, eds., McMillan, London.Google Scholar
  65. Gran, H. H., 1915, The plankton production in the North European waters in the spring of 1912, Bull. Flankt. Cons. Int. Expl. Mer., 1912.:5.Google Scholar
  66. Gran, H. H., 1932, On the conditions for the production of plankton in the sea, Rapp. Cons. Int. Expl. Mer., 75:37.Google Scholar
  67. Hagström, Å., Azam, F., Andersson, A., Wikner, J., and Rassoulzadegan, F., 1988, Microbial loop in an oligotrophic pelagic marine ecosystem: Possible roles of cyanobacteria and nanoflagellates in the organic fluxes, Mar. Ecol. Prog. Ser., 49:171.CrossRefGoogle Scholar
  68. Halldal, P., 1953, Phytoplankton investigations from Weather Ship M in the Norwegian Sea, 1948–49, Norske Vidensk.-Akad. Oslo, Hvalrådets Skr., 38.Google Scholar
  69. Hamner, W. M., 1985, The importance of ethology for investigations of marine Zooplankton, Bull. Mar. Sci., 37:414.Google Scholar
  70. Hansen, P. J., 1991, Dinophysis: a planktonic dinoflagellate genus which can act both as a prey and a predator of a ciliate, Mar. Ecol. Prog. Ser., 69:201.CrossRefGoogle Scholar
  71. Hardy, A. C., 1936, Plankton ecology and the theory of animal exclusion, Proc. Linn. Soc., 148:64.CrossRefGoogle Scholar
  72. Hardy, A. C., 1953, Some problems of pelagic life, in: “Essays in Marine Biology (Richard Elmhirst Memorial Lectures),” S.M. Marshall and A.P. Orr, eds., Oliver and Boyd, Edinburgh.Google Scholar
  73. Harris, E., 1959, The nitrogen cycle in Long Island Sound, Bull. Bingham Oceanogr. Coll., 17:31.Google Scholar
  74. Harrison, W. G., 1980, Nutrient regeneration and primary production in the sea, in: “Primary Productivity in the Sea,” P.G. Falkowski, ed., Plenum Press, New York.Google Scholar
  75. Hart, T. J., 1942, Phytoplankton periodicity in Antarctic surface waters, Discovery Repts., 21:261.Google Scholar
  76. Harvey, W. H., 1937, Note on selective feeding by Calanus, J. Mar. Biol. Ass. U.K., 22:97.CrossRefGoogle Scholar
  77. Harvey, H. W., 1942, Production of life in the sea, Biol. Rev., 17:221.CrossRefGoogle Scholar
  78. Harvey, H. W., 1955, “The Chemistry and Fertility of Sea Waters,” Cambridge University Press, Cambridge.Google Scholar
  79. Harvey, W. H., Cooper, L. H. N., Lebour, M. V., and Russell, F. S., 1935, Plankton production and its control, J. Mar. Biol. Ass. U.K., 20:407.CrossRefGoogle Scholar
  80. Hayward, T. L., 1987, The nutrient distribution and primary production in the central North Pacific, Deep-Sea Res., 34:1593.CrossRefGoogle Scholar
  81. Hela, I., and Laevastu, T., 1961, “Fisheries Hydrography,” Fishing News, London.Google Scholar
  82. Heldal, M., and Bratbak, G., 1991, Production and decay of viruses in aquatic environments, Mar. Ecol. Prog. Ser., 72:205.CrossRefGoogle Scholar
  83. Hensen, V., 1887, Ueber die Bestimmung des Plankton’s oder des im Meere treibenden Materials an Pflanzen und Tieren, Fünfler Ber. Komm. Unters, dtsch. Meere Kiel (1882 bis 1886), XII-XVI: 1.Google Scholar
  84. Hentschel, E., 1932, Die biologischen Methoden und das biologische Beobachtungsmaterial der “Meteor” Expedition, Wiss. Ergebn. Dtsch. Atl. Exp. “Meteor” 1925–1927, 10:1.Google Scholar
  85. Hentschel, E., 1933, Allgemeine Biologie des Südatlantischen Ozeans, Das Pelagial der obersten Wasserschicht, Wiss. Ergebn. Dtsch. Atl. Exp. “Meteor” 1925–1927, 11(1. Lief.):1.Google Scholar
  86. Hentschel, E., and Wattenberg, H., 1930, Plankton and Phosphat in der Oberflächenschicht des Südatlantischen Ozeans, Ann. Hydrogr., Berlin. 58:273.Google Scholar
  87. Hobbie, J. E., Daley, R. J., and Jasper, S., 1977, Use of Nuclepore filters for counting bacteria by fluorescence microscopy, Appl. Environ. Microbiol., 33:1225.PubMedGoogle Scholar
  88. Holmes, R. W., 1956, The annual cycle of phytoplankton in the Labrador Sea, 1950-51, Bull. Bingham Oceanogr. Coll., 16:1.Google Scholar
  89. Huntley, M. E., Lopez, M. D. G., and Karl, D. M., 1991, Top predators in the Southern Ocean: A major leakin the biological carbon pump, Science, 253:64.CrossRefPubMedGoogle Scholar
  90. Huntley, M. E., Marin, V., and Escritor, F., 1987, Zooplankton grazers as transformers of ocean optics: a dynamic model, J. Mar. Res., 45:911.CrossRefGoogle Scholar
  91. Jackson, G. A., 1990, A model of the formation of marine algal flocs by physical coagulation processes, Deep-Sea Res., 37:1197.CrossRefGoogle Scholar
  92. Jacobson, D. M., and Anderson, D. M., 1986, Thecate heterotrophic dinoflagellates: feeding behaviour and mechanism, J. Phycol., 22:249.CrossRefGoogle Scholar
  93. Jamart, B. M., Winter, D. F., Banse, K., Anderson, G., C., and Lam, R. K., 1977, A theoretical study of phytoplankton growth and nutrient distribution in the Pacific Ocean off the Northwestern U.S. coast, Deep-Sea Res., 24:753.CrossRefGoogle Scholar
  94. Jamart, B. M., Winter, D. F., and Banse, K., 1979, Sensitivity analysis of a mathematical model of phytoplankton growth and nutrient distribution in the Pacific Ocean off the northwestern U.S. coast, J. Plankton Res., 1:267.CrossRefGoogle Scholar
  95. Jassby, A. D., and Goldman, C. R., 1974, Loss rates from a lake phytoplankton community, Limnol. Oceanogr., 19:618.CrossRefGoogle Scholar
  96. Joint, I. R., and Morris, R. J., 1982, The role of bacteria in the turnover of organic matter in the sea, Oceanogr. Mar. Biol. Ann. Rev., 20:65.Google Scholar
  97. Jumars, P. A., Penry, D. L., Baross, J. A., Pery, M. J., and Frost, B. W., 1989, Closing the microbial loop: Dissolved carbon pathway to heterotrophic bacteria from incomplete ingestion, digestion and absorption in animals, Deep-Sea Res., 36:483.CrossRefGoogle Scholar
  98. Kesteven, G. L., and Laevastu, T., 1957–1958, “The Oceanographic Conditions for Life and Abundance of Phytoplankton in Respect to Fisheries,” Food and Agriculture Organization of the United Nations, Fisheries Division, Biology Branch, FAO/57/6/4144 and FAO/58/5/3749 (FB/58/T13).Google Scholar
  99. Kjørboe, T., Andersen, K. P., and Dam, H. G., 1990, Coagulation efficiency and aggregate formation in marine phytoplankton, Mar. Biol., 107:235.CrossRefGoogle Scholar
  100. Knauss, J. A., 1963, Equatorial current systems, in: “The Sea,” Vol. 2, M.N. Hill, ed., Wiley, New York.Google Scholar
  101. Kremer, J. N., and Nixon, S. W., 1978, “A Coastal Marine Ecosystem: Simulation and Analysis,” Springer-Verlag, Berlin.CrossRefGoogle Scholar
  102. Kyle, H. M., 1910, Résumé des observations sur le plankton des mers explorées par le Conseil pendant les années 1902–1908, 1ere partie., Bull. Trimestr. Cons. Int. Expl. Mer.Google Scholar
  103. Lampert, W., 1987, Vertical migration of freshwater Zooplankton: Indirect effects of vertebrate predators on algal communities, in: “Predation: Direct and Indirect Impacts on Aquatic Communities,” W.C. Kerfoot, and A. Sih, eds., University Press of New England.Google Scholar
  104. Lancelot, C., 1983, Factors affecting phytoplankton extracellular release in the Southern Bight of the North Sea, Mar. Ecol. Prog. Ser., 12:115–121.CrossRefGoogle Scholar
  105. Lancelot, C., and Billen, G. 1985. Carbon-nitrogen relationships in nutrient metabolism of coastal marine ecosystems, in: “Advances in Aquatic Microbiology,” Vol. 3, H.W. Jannasch, and P.J.L. Williams, eds., Academic Press, London.Google Scholar
  106. Landry, M. R., and Hassett, R. P., 1982, Estimating the grazing impact of marine micro-zooplankton, Mar. Biol., 67:283.CrossRefGoogle Scholar
  107. Laws, E. A., DiTullio, G. R., and Redalje, D. G., 1987, High phytoplankton growth and production rates in the North Pacific subtropical gyre, Limnol. Oceanogr., 32:905.CrossRefGoogle Scholar
  108. Lessard, E. J., 1991, The trophic role of heterotrophic dinoflagellates in diverse marine environments, Mar. Microb. Food Webs, 5:49.Google Scholar
  109. Lessard, E. J., and Swift, E., 1985, Species-specific grazing rates of heterotrophic dinoflagellates in oceanic waters, measured with a dual-label radioisotope technique, Mar. Biol., 87:289.CrossRefGoogle Scholar
  110. Levitus, S., 1982, “Climatological Atlas of the World Ocean,” U.S. Dept. of Commerce, Natl. Oceanic Atmosph. Admin., NOAA Prof. Pap. 13, 173 pp.Google Scholar
  111. Lewis, M., this volume.Google Scholar
  112. Lohmann, H., 1903, Neue Untersuchungen über den Reichthum des Meeres an Plankton und über die Brauchbarkeit der verschiedenen Fangmethoden, Wiss. Meeresunters., Abt. Kiel, N.F. 7:1.Google Scholar
  113. Lohmann, H., 1908, Untersuchungen zur Festellung des vollständigen Gehaltes des Meeres an Plankton, Wiss. Meeresunters., Abt. Kiel, N. F. 10:129.Google Scholar
  114. Lohmann, H., 1912, Untersuchungen über das Pflanzen-und Tierleben der Hochsee, Veröff. Inst. Meeresk. Univ. Berlin, N.F. A.1:1.Google Scholar
  115. Lohmann, H., 1920, Die Bevölkerung des Ozeans mit Plankton nach den Ergebnissen der Zentrifugenfänge während der Ausreise der “Deutschland” 1911, Arch. Biontol. 4(3):1.Google Scholar
  116. Longhurst, A. R., and Williams, R., 1979, Materials for plankton modelling: Vertical distribution of Atlantic Zooplankton in summer, J. Plankton Res., 1:1.CrossRefGoogle Scholar
  117. Love, C. M., 1970, “EASTROPAC Atlas”, Vol. 4, U.S. Fish Wildl. Serv. Circ., 330.Google Scholar
  118. Love, C. M., 1974, “EASTROPAC Atlas”, Vol. 8, U.S. Fish Wildl. Serv. Circ, 330.Google Scholar
  119. Martin, J. H., Gordon, R. M., Fitzwater, S. E., and Broenkow, W. W., 1989, VERTEX: phytoplankton/iron studies in the Gulf of Alaska, Deep-Sea Res., 36:649.CrossRefGoogle Scholar
  120. Martin, J. H., Fitzwater, S. E., and Gordon, R. M., 1990, Iron deficiency limits phytoplankton growth in Antarctic waters, Global Biogeochem. Cycles, 4:5.CrossRefGoogle Scholar
  121. McAllister, C. D., 1969, Aspects of estimating Zooplankton production from phytoplankton production, J. Fish. Res. Bd. Canada, 26:199.CrossRefGoogle Scholar
  122. Menzel, D. W., and Ryther, J. H., 1961, Annual variations in primary production of the Sargasso sea off Bermuda, Deep-Sea Res., 7:282.CrossRefGoogle Scholar
  123. Mills, E. L., 1989, “Biological Oceanography: An Early History, 1870–1960,” Cornell University Press, Ithaca, NY.Google Scholar
  124. Mullin, M. M., 1963, Some factors affecting the feeding of marine copepods of the genus Calanus, Limnol. Oceanogr., 8:239.CrossRefGoogle Scholar
  125. Murdoch, W. M., 1966, “Community structure, population control, and competition”—a critique, Amer. Nat., 100:219.CrossRefGoogle Scholar
  126. Nathanson, A., 1908, Beiträge zur Biologie des Plankton, I. Über die allgemeinen Produktionsbedingungen im Meere, Intern. Rev. ges. Hydrobiol, 1:37.CrossRefGoogle Scholar
  127. Paffenhöfer, G. A., 1988, Feeding rates and behavior of Zooplankton, Bull Mar. Sci., 43:430.Google Scholar
  128. Peña, M. A., Lewis, M. R., and Harrison, W. G., 1990, Primary productivity and size structure of phytoplankton biomass on a transect of the equator at 135°W in the Pacific Ocean, Deep-Sea Res., 37:295.CrossRefGoogle Scholar
  129. Pena, M. A., Lewis, M. R., and Harrison, W. G., 1991, Particulate organic matter and chlorophyll in the surface layer of the equatorial Pacific Ocean along 135°W, Mar. Ecol. Prog. Ser., 72:179.CrossRefGoogle Scholar
  130. Platt, T., and Harrison, W. G., 1985, Biogenic fluxes of carbon and oxygen in the ocean, Nature, 318:55.CrossRefGoogle Scholar
  131. Platt, T., Harrison, W. G., Lewis, M. R., Li, W. K. W., Sathyendranath, S., Smith, R. E., and Vézina, A. F., 1989, Biological production of the oceans: The case for a consensus, Mar. Ecol. Prog. Ser., 52:77.CrossRefGoogle Scholar
  132. Pomeroy, L. R., 1974, The ocean’s food web, a changing paradigm, BioScience, 24:499.CrossRefGoogle Scholar
  133. Pomeroy, L. R., 1984, Significance of microorganisms in carbon and energy flow in marine ecosystems, in: “Current Perspectives in Micobial Ecology,” J.M. Klug and C.A. Reddy, eds., Am. Soc. Microbiol., Washington.Google Scholar
  134. Pomeroy, L. R., and Wiebe, W. J., 1988, Energetics of microbial food webs, Hydrobiologia, 159:7.CrossRefGoogle Scholar
  135. Porter, K. G., and Feig, Y. S., 1980, The use of DAPI for identifying and counting aquatic microflora, Limnol. Oceanogr., 25:943.CrossRefGoogle Scholar
  136. Poulet, S. A., Williams, R., Conway, D. V. P., and Videau, C., 1991, Co-occurrence of copepods and dissolved free amino acides in shelf sea waters, Mar. Biol., 108:373.CrossRefGoogle Scholar
  137. Price, H. J., 1988, Feeding mechanisms in marine and freshwater plankton, Bull. Mar. Sci., 43:327.Google Scholar
  138. Proctor, L. A., and Fuhrman, J. A., 1990, Viral mortality of marine bacteria and cyanobacteria, Nature, 343:60.CrossRefGoogle Scholar
  139. Pütter, A., 1926, Die Ernährung der Copepoden, Arch. Hydrobiol., 15:70.Google Scholar
  140. Riebesell, U., 1991, Particle aggregation during a diatom bloom, II. Biological aspects, Mar. Ecol. Prog. Ser., 69:281.CrossRefGoogle Scholar
  141. Riemann, B., Jørgensen, N. O. G., Lampert, W., and Fuhrman, J. A., 1986, Zooplankton induced changes in dissolved free amino acids and in production rates of freshwater bacteria, Microb. Ecol., 12:247–258.CrossRefGoogle Scholar
  142. Riemann, B., and Søndergaard, M., 1986, Bacteria, in: “Carbon Dynamics in Eutrophic, Temperate Lakes,” B. Riemann, and M. Søndergaard, eds., Elsevier, Amsterdam.Google Scholar
  143. Rigler, F. H., 1975, The concept of energy flow and nutrient flow between trophic levels, in: “Unifying Concepts in Ecology,” W.H. van Dobben, and R.H. Lowe-McConnell, eds., Junk, The Hague.Google Scholar
  144. Riley, G. A., 1946, Factors controlling phytoplankton populations on Georges Bank, J. Mar. Res., 6:54.Google Scholar
  145. Riley, G. A., 1956, Oceanography of Long Island Sound, 1952–1954, IX. Production and utilization of organic matter, Bull. Bingham Oceanogr. Coll., 15:324.Google Scholar
  146. Riley, G. A., 1957, Phytoplankton of the North Central Sargasso Sea, 1950–52, Limnol. Oceanogr., 2:252.Google Scholar
  147. Riley, G. A., 1965, A mathematical model of regional variations in plankton, Limnol. Oceanogr., 10 (Suppl.):202.CrossRefGoogle Scholar
  148. Riley, G. A., 1976, A model of plankton patchiness, Limnol. Oceanogr., 21:873.CrossRefGoogle Scholar
  149. Riley, G. A., 1967, The plankton of estuaries, in: “Estuaries,” G.H. Lauff, ed., Amer. Assoc. Adv. Sci., Publ., 83.Google Scholar
  150. Riley, G. A., Stommel, H., and Bumpus, D. F., 1949, Quantitative ecology of the plankton of the western North Atlantic, Bull. Bingham Oceanogr. Coll., 12(3):1.Google Scholar
  151. Roman, M. R., Yentsch, C. S., Gauzens, A. L., and Phinney, D. A., 1986, Grazer control of the fine-scale distribution of phytoplankton in warm-core Gulf Stream rings, J. Mar. Res., 44:795.CrossRefGoogle Scholar
  152. Ryther, J. H., and Hulburt, E. M., 1960, On winter mixing and the vertical distribution of phytoplankton, Limnol. Oceanogr., 5:337.CrossRefGoogle Scholar
  153. Sharp, J. H., 1991, Review of carbon, nitrogen, and phosphorus biogeochemistry, Rev. Geophys., (Suppl.) Apr. 91:648.Google Scholar
  154. Shulenberger, E., 1978, The deep chlorophyll maximum and mesoscale environmental heterogeneity in the western half of the North Pacific central gyre, Deep-Sea Res., 25:1193.CrossRefGoogle Scholar
  155. Silver, M. W., Gowing, M. M., and Davoll, P. J., 1986, The association of photosynthetic picoplankton and ultraplankton with pelagic detritus through the water column (0–2000 m), in: “Photosynthetic Picoplankton,” T. Platt, and W. K. W. Li, eds., Can. Bull. Fish. Aquat. Sci., 214:311.Google Scholar
  156. Small, L. F., Landry, M. R., Eppley, R. W., Azam, F., and Carlucci, A. F., 1989, Role of plankton in the carbon and nitrogen budgets of Santa Monica Basin, California, Mar. Ecol. Prog. Ser., 56:57.CrossRefGoogle Scholar
  157. Smayda, T. J., 1966, A quantitative analysis of the phytoplankton of the Gulf of Panama. III. General ecological conditions, and the phytoplankton dynamics at 8°45’N, 79°23’W from November 1954 to May 1957, Bull. Inter-Amer. Trop. Tuna Comm., 11:353.Google Scholar
  158. Smetacek, V., and Passow, U., 1990, Spring bloom initiation and Sverdrup’s critical-depth model, Limnol. Oceanogr., 35:228.CrossRefGoogle Scholar
  159. Smetacek, V., Scharek, R., and Nöthig, E. M., 1990, Seasonal and regional variation in the pelagial and its relationship to the life history cycle of krill, in: “Antarctic Ecosystems, Ecological Change and Conservation,” K.R. Kerry, and G. Hempel, eds., Springer-Verlag, Berlin.Google Scholar
  160. Staley, J. T., and Konopka, A., 1985, Measurement of in situ activities of nonphotosynthetic microorganisms in aquatic and terrestrial habitats, Ann. Rev. Microbiol., 39:321.CrossRefGoogle Scholar
  161. Steele, J. H., 1958, Plant production in the northern North Sea, Scot. Home Dept., Mar. Res., 1958(7):1.Google Scholar
  162. Steele, J. H., 1974, “The Structure of Marine Ecosystems,” Harvard University Press, Cambridge, MA.Google Scholar
  163. Steemann Nielsen, E., 1933, Über quantitative Untersuchung von marinem Plankton mit Utermöhls umgekehrten Mikroskop, J. Cons. Int. Expl. Mer, 8:201.Google Scholar
  164. Steemann Nielsen, E., 1940, Die Produktionsbedingungen des Phytoplanktons im Übergangsgebiet zwischen der Nord-und Ostsee, Medd. Komm. Danmarks Fisk.-Havunders., Ser. Plankton, 3(4): 1.Google Scholar
  165. Steemann Nielsen, E., 1958, The balance between phytoplankton and Zooplankton in the sea, J. Cons. Int. Expl. Mer., 23:178.Google Scholar
  166. Steemann Nielsen, E., 1962, The relationship between phytoplankton and Zooplankton in the sea, Rapp. Cons. Int. Expl. Mer., 153:178.Google Scholar
  167. Strathmann, R. R., 1967, Estimating the organic carbon content of phytoplankton from cell volume or plasma volume, Limnol. Oceanogr., 12:411.CrossRefGoogle Scholar
  168. Strom, S. L., and Welschmeyer, N. A., 1991, Pigment-specific rates of phytoplankton growth and microzooplankton grazing in the open subarctic Pacific, Limnol. Oceanogr., 36:50.CrossRefGoogle Scholar
  169. Sverdrup, H. U., 1953, On conditions for the vernal blooming of phytoplankton, J. Cons. Int. Expl. Mer., 18:287.Google Scholar
  170. Swift, E., Stuart, M., and Meunier, V., 1976, The in situ growth rates of some deep-living oceanic dinoflagellates: Pyrocystis fusiformis and Pyrocystis noctiluca, Limnol. Oceanogr., 21:418.CrossRefGoogle Scholar
  171. Taylor, G. T., Iturriaga, R., and Sullivan, C. W., 1985, Interactions of bactivorous grazers and heterotrophic bacteria with dissolved organic matter, Mar. Ecol. Prog. Ser., 23:129.CrossRefGoogle Scholar
  172. Turner, J. T., and Tester, P. A., 1989, Zooplankton feeding ecology: Nonselective grazing by the copepods Acartia tonsa Dana, Centropages velificatus De Oliveira, and Eucalanus pileatus Giesbrecht in the plume of the Mississippi River, J. Exp. Mar. Biol. Ecol, 126:21.CrossRefGoogle Scholar
  173. Utermöhl, H., 1931, Neue Wege in der quantitativen Erfassung des Planktons (mit besonderer Berücksichtigung des Ultraplanktons), Verh. int. Ver. theor. angew. Limnol., 5:567.Google Scholar
  174. Verity, P. G., 1985, Grazing, respiration, excretion, and growth rates of tintinnids. Limnol. Oceanogr., 30:1268.CrossRefGoogle Scholar
  175. Vézina, A. F., and Platt, T., 1988, Food web dynamics in the ocean, I. Best-estimates of flow networks using inverse methods, Mar. Ecol. Prog. Ser., 42:269.CrossRefGoogle Scholar
  176. Vinogradov, M. E., Krapivin, V. F., Menshutkin, V. V., Fleyshman, B. S., and Shushkina, E. A., 1973, Mathematical model of the functions of the pelagial ecosystem in tropical regions (from the 50th voyage of the R/V VITYAZ), Oceanology, 13:704.Google Scholar
  177. Vinogradov, M. E., and Menshutkin, V. V., 1977, The modeling of open-sea ecosystems, in: “The Sea,” Vol. 6, E.D. Goldberg et al., eds., Wiley, New York.Google Scholar
  178. Walsh, J. J., 1976, Herbivory as a factor in patterns of nutrient utilization in the sea, Limnol. Oceanogr., 21:1.CrossRefGoogle Scholar
  179. Walsh, J. J., 1977, A biological sketchboo&for an eastern boundary current, in: “The Sea,” E.D. Goldberg et al., eds., Vol 6, Wiley, New York.Google Scholar
  180. Wassmann, P., Vernet, M., Mitchell, B. G., and Rey, F., 1990, Mass sedimentation of Phaeocystis pouchetii in the Barents Sea, Mar. Ecol. Prog. Ser., 66:183.CrossRefGoogle Scholar
  181. Weisse, T., and Scheffel-Möser, U., 1991, Uncoupling the microbial loop: Growth and grazing loss rates of bacteria and heterotrophic nanoflagellates in the North Atlantic, Mar. Ecol. Prog. Ser., 71:195.CrossRefGoogle Scholar
  182. Welschmeyer, N. A., and Lorenzen, C. J., 1985, Chlorophyll budgets: Zooplankton grazing and phytoplankton growth in a temperate fjord and the central Pacific gyres, Limnol. Oceanogr., 30:1.CrossRefGoogle Scholar
  183. Williams, P. J. leB., 1981, Incorporation of microheterotrophic processes into the classical paradigm of the planktonic foodweb, Kieler Meeresforsch., Sonderh., 5:1.Google Scholar
  184. Wolter, K., 1982, Bacterial incorporation of organic substances released by natural phytoplankton populations, Mar. Ecol. Prog. Ser., 7:287.CrossRefGoogle Scholar
  185. Wyrtki, K., 1990, Becoming an oceanographer forty years ago, Oceanography, 3:39.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • Karl Banse
    • 1
  1. 1.School of Oceanography, WB-10University of WashingtonSeattleUSA

Personalised recommendations