Skip to main content

Grazing, Temporal Changes of Phytoplankton Concentrations, and the Microbial Loop in the Open Sea

  • Chapter
Book cover Primary Productivity and Biogeochemical Cycles in the Sea

Part of the book series: Environmental Science Research ((ESRH,volume 43))

Abstract

With the advent of maps of chlorophyll distribution in the world ocean (Feldman et al., 1989; Lewis, this volume), parochial questions can be asked on a global basis: (1) where, (2) when, and (3) why does phytoplankton occur in the open sea, and (4) how much is found? The first and fourth questions will be addressed briefly at the outset. The paper will treat the second and third questions at length, emphasizing the annual and seasonal time scales. Grazing will be shown to be a key variable that largely has been underrated. In addition to affecting phytoplankton, grazing will be recognized as central to the supply of substrate for the microbial loop.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alldredge, A. L., and Gotschalk, C.C., 1989, Direct observations of the mass flocculation of diatom blooms: Characteristics, settling velocities and formation of diatom aggregates, Deep-Sea Res., 36:159.

    Article  CAS  Google Scholar 

  • Anderson, G. C., Lam, R. K., Booth, B. C., and Glass, J. M., 1977, A description and numerical analysis of the factors affecting processes of production in the Gulf of Alaska, NOAA 03-5-022-67 Environmental Assessment Alaskan Continental Shelf, VII:477.

    Google Scholar 

  • Anderson, G. C., and Munson, R. E., 1972, Primary productivity studies using merchant vessels in the North Pacific Ocean, in: “Biological Oceanography of the Northern North Pacific Ocean,” A.Y. Takenouti, ed., Idemitsu Shoten, Tokyo.

    Google Scholar 

  • Andersson, A., Lee, C., Azam, F., and Hagström, Å, 1985, Release of amino acids and inorganic nutrients by heterotrophic marine microflagellates, Mar. Ecol. Prog. Ser., 23:99.

    Article  CAS  Google Scholar 

  • Apstein, C., 1905, Die Schätzungsmethode in der Planktonforschung, Wiss. Meeresunters., Abt. Kiel, N.F. 8:103.

    Google Scholar 

  • Apstein, C., 1911, Biologische Studie über Ceratium tripos var. subsalsa Ostf, Wiss. Meeresunters., Abt. Kiel, N.F. 12:137.

    Google Scholar 

  • Azam, F., Fenchel, T., Field, J. G., Gray, J. S., Meyer-Reil, L. A., and Thingstad, F., 1983, The ecological role of water-column microbes in the sea, Mar. Ecol. Prog. Ser., 10:257.

    Article  Google Scholar 

  • Azam, F., Cho, B. C., Smith, D. C., and Simon, M., 1990, Bacterial cycling of matter in the pelagic zone of aquatic ecosystems, in: “Large Lakes,” M.M. Tilzer, and C. Serruya, eds., Springer-Verlag, Berlin.

    Google Scholar 

  • Bainbridge, R., 1953, Studies on the relationships of Zooplankton and phytoplankton, J. Mar. Biol. Ass. U.K., 32:385.

    Article  Google Scholar 

  • Banse, K., 1982a, Cell volumes, maximal growth rates of unicellular algae and ciliates, and the role of ciliates in the marine pelagial, Limnol. Oceanogr., 27:1059.

    Article  Google Scholar 

  • Banse, K., 1982b, Mass-scaled rates of respiration and intrinsic growth in very small invertebrates, Mar. Ecol Prog. Ser., 9:281.

    Article  Google Scholar 

  • Banse, K., 1982c, Experimental marine ecosystem enclosures in a historial perspective, in: “Marine Mesocosms: Biological and Chemical Research in Experimental Ecosytems,” G.D. Grice, and M.R. Reeve, eds., Springer-Verlag, New York.

    Google Scholar 

  • Banse, K., 1990, New views on the degradation and disposition of organic particles as collected by sediment traps in the open sea, Deep-Sea Res., 37:1177.

    Article  Google Scholar 

  • Banse, K., Rates of phytoplankton cell division in the field and in iron enrichment experiments, Limnol. Oceanogr, 36(8), in press.

    Google Scholar 

  • Banse, K., and Yong, M., 1990, Sources of variability in satellite-derived estimates of phytoplankton production in the eastern tropical Pacific, J. Geophys. Res., 95:7201.

    Article  Google Scholar 

  • Beklemishev, C. W., 1957, The spatial interrelationship of marine zoo-and phytoplankton (In Russian) Tr. Inst. Okeanol., Akad. NaukSSSR, 20:253. Translation in: “Marine Biology,” B.N. Nikitin, ed., Am. Inst. Biol. Sci., Washington, D.C. (1959).

    Google Scholar 

  • Bienfang, P. K., and Szyper, J. P., 1981, Phytoplankton dynamics in the subtropical Pacific Ocean off Hawaii, Deep-Sea Res., 28:981.

    Article  CAS  Google Scholar 

  • Bigelow, H.B., 1926, Plankton of the offshore waters of the Gulf of Maine, Bull. U.S. Bureau Fish., 40:1.

    Google Scholar 

  • Bjørnsen, P. K., 1988, Phytoplankton exudation of organic matter: Why do healthy cells do it?, Limnol. Oceanogr., 33:151.

    Article  Google Scholar 

  • Brandt, K., 1925, Victor Hensen und die Meeresforschung, Wiss. Meeresunters., Abt. Kiel, N.F. 20:49.

    Google Scholar 

  • Braarud, T., 1935, The “Øst” Expedition to the DenmarkStrait 1929. II. The phytoplankton and its conditions of growth, Norske Vidensk.-Akad. Oslo, Hvalrådets Skr. 10.

    Google Scholar 

  • Capriulo, G. M., 1990, Feeding-related ecology of marine protozoa, in: “Ecology of Marine Protozoa,” G.M. Capriulo, ed., Oxford University Press, Oxford.

    Google Scholar 

  • Caron, D. A., Goldman, J. C., Andersen, O. K., and Dennett, M. R., 1985, Nutrient cycling in a microflagellate food chain: II. Population dynamics and carbon cycling, Mar. Ecol. Prog. Ser., 24:243.

    Article  CAS  Google Scholar 

  • Cho, B. C., and Azam, F., 1990, Biogeochemical significance of bacterial biomass in the ocean’s euphotic zone, Mar. Ecol. Prog. Ser., 63:253.

    Article  CAS  Google Scholar 

  • Clemons, M. J., and Miller, C. B., 1984, Blooms of large diatoms in the oceanic, subarctic Pacific, Deep-Sea Res., 31:85.

    Article  Google Scholar 

  • Cohen, E. B., Grosslein, M. D., Sissenwine, M. P., Steimle, F., and Wright, W. R., 1982, Energy budget of Georges Bank, Can. Spec. Publ. Fish. Aquat. Sci., 59:95.

    Google Scholar 

  • Cole, J., J., Findlay, S., and Pace, M. L., 1988, Bacterial production in fresh and saltwater ecosystems: A cross-system overview, Mar. Ecol. Prog. Ser., 43:1.

    Article  Google Scholar 

  • Copping, A. E., and Lorenzen, C. J., 1980, Carbon budget of a marine phytoplankton-herbivore system with carbon-14 as a tracer, Limnol. Oceanogr., 25:873.

    Article  Google Scholar 

  • Cowles, T. J., Olson, R. J., and Chisholm, S. W., 1988, Food selection by copepods: Discrimination on the basis of food quality, Mar. Biol., 100:41.

    Article  Google Scholar 

  • Cullen, J. J., Lewis, M. R., Davis, C. O., and Barber, R. T., Photosynthetic characteristics and estimated growth rates indicate grazing is the proximate control of primary production in the equatorial Pacific, J. Geophys. Res., in press.

    Google Scholar 

  • Cushing, D. H., 1955, Production and a pelagic fishery, Fish. Invest. Lond., Ser. II, 18(7):1.

    Google Scholar 

  • Cushing, D. H., 1958, The effect of grazing in reducing the primary production: A review, Rapp. Cons. Intern. Expl. Mer., 144:149.

    Google Scholar 

  • Cushing, D. H., 1959a, On the nature of production in the sea, Fish. Invest. London, Ser. II, 22(6):1.

    Google Scholar 

  • Cushing, D. H., 1959b, The seasonal variation in oceanic production as a proplem in population dynamics, J. Cons. Int. Expl. Mer., 23:455.

    Google Scholar 

  • Cushing, D. H., 1963, Studies on a Calanus patch. V. The production cruises in 1954: Summary and conclusions, J. Mar. Biol. Ass. U.K., 43:387.

    Article  Google Scholar 

  • Cushing, D. H., 1980, Production in the central gyres of the Pacific, Intergov. Oceanogr. Comm., Techn. Ser., 21:31.

    Google Scholar 

  • Dagg, M. J., 1974, Loss of prey body contents during feeding by an aquatic predator, Ecology, 55:903.

    Article  Google Scholar 

  • Dandonneau, Y., and Gohin, F., 1984, Meridional and seasonal variations of the sea surface chlorophyll concentration in the southwestern tropical Pacific (14 to 32°S, 160 to 175°E), Deep-Sea Res., 31:1377.

    Article  CAS  Google Scholar 

  • Davis, C. S., 1987, Components of the Zooplankton production cycle in the temperate ocean, 7. Mar. Res., 45:947.

    Article  Google Scholar 

  • de Baar, H. J. W., Buma, A. G. J., Nolting, R. F., Cadée, G. C., Jacques, G., and Tréguer, P. J., 1990, On iron limitation of the Southern Ocean: experimental observations in the Weddell and Scotia Seas, Mar. Ecol. Prog. Ser., 65:105.

    Article  Google Scholar 

  • Ducklow, H. W., 1983, Production and fate of bacteria in the oceans, BioScience, 33:494.

    Article  Google Scholar 

  • Ducklow, H., W., 1991, The passage of carbon through microbial foodwebs: Results from flow networkmodels, Mar. Microb. Food Webs, 5:129.

    Google Scholar 

  • Ducklow, H. W., Fasham, M. J. R., and Vézina, A. F., 1989, Derivation and analysis of flow networks for open ocean plankton systems, in: “Coastal and Estuarine Studies,” F. Wulff, J.G. Field, and K.H. Mann, eds., Springer-Verlag, Berlin.

    Google Scholar 

  • Dugdale, R. C., and Goering, J. J., 1967, Uptake of new and regenerated forms of nitrogen in primary productivity, Limnol. Oceanogr., 12:196.

    Article  CAS  Google Scholar 

  • El-Sayed, S.Z., 1967, On the productivity of the southwest Atlantic Ocean and the waters west of the Antarctic Peninsula, Antarct. Res. Ser., 11:15.

    Article  Google Scholar 

  • El-Sayed, S. Z., 1988, Productivity of the Southern Ocean: A closer look, Comp. Biochem. Physiol., 90B:489.

    Google Scholar 

  • Eppley, R. W., 1972, Temperature and phytoplankton growth in the sea, U.S. Fish. Bull., 70:1063.

    Google Scholar 

  • Eppley, R. W., Renger, E. H., and Harrison, W. G., 1979, Nitrate and phytoplankton production in southern California coastal waters, Limnol. Oceanogr., 24:483.

    Article  CAS  Google Scholar 

  • Eppley, R. W., Horrigan, S. G., Fuhrman, J. A., Brooks, E. R., Price, C. C., and Sellner, K., 1981, Origins of dissolved organic matter in southern California coastal waters: Experiments on the role of Zooplankton, Mar. Ecol. Prog. Ser., 6:149.

    Article  Google Scholar 

  • Evans, G. T., and Parslow, J. S., 1985, A model of annual plankton cycles, Biol. Oceanogr., 3:327.

    Google Scholar 

  • Evans, G. T., Steele, J. H., and Kullenberg, G. E. B., 1977, A preliminary model of shear diffusion and plankton populations, Scot. Fish. Res. Rept., 9.

    Google Scholar 

  • Fasham, M. J. R., Ducklow, H. W., and McKelvie, S. M., 1990, A nitrogen-based model of plankton dynamics in the oceanic mixed layer, J. Mar. Res., 48:591.

    Article  CAS  Google Scholar 

  • Fasham, M. J. R., Holligan, P. M., and Pugh, P. R., 1983, The spatial and temporal development of the spring phytoplankton bloom in the Celtic sea, April 1979, Prog. Oceanogr., 12:87.

    Article  Google Scholar 

  • Feldman, G., and 12 co-authors, 1989, Ocean color, Availability of the Global Data Set, EOS (Tr. Am. Geophys. U.), 70:634, 640.

    Google Scholar 

  • Fenchel, T., 1980, Suspension feeding in ciliated protozoa: Feeding rates and their ecological significance, Microb. Ecol., 6:13.

    Article  Google Scholar 

  • Fenchel, T., 1982, Ecology of heterotrophic microflagellates, II. Bioenergetics and growth, Mar. Ecol. Prog. Ser., 8:225.

    Article  Google Scholar 

  • Fenchel, T., 1988, Marine plankton food chains, Ann. Rev. Ecol. Syst., 19:19.

    Article  Google Scholar 

  • Fleming, R. H., 1939, The control of diatom populations by grazing, J. Cons. Int. Expl. Mer, 14:210.

    Google Scholar 

  • Frost, B. W., 1980, The inadequacy of body size as an indicator of niches in the Zooplankton, in: “Evolution and Ecology of Zooplankton Communities,” W. C. Kerfoot, ed., University Press of New England, Hanover.

    Google Scholar 

  • Frost, B. W., 1987, Grazing control of phytoplankton stoc&in the open subarctic Pacific Ocean: A model assessing the role of mesozooplankton, particularly the large calanoid copepods Neocalanus spp, Mar. Ecol. Prog. Ser., 39:49.

    Article  Google Scholar 

  • Frost, B. W., The role of grazing in nutrient-rich areas of the open sea, Limnol. Oceanogr., 36(8), in press.

    Google Scholar 

  • Fuhrman, J. A., Sleeter, T. D., Carlson, C. A., and Proctor, L. M., 1989, Dominance of bacterial biomass in the Sargasso Sea and its ecological implications, Mar. Ecol. Prog. Ser., 57:207.

    Article  Google Scholar 

  • Fukuchi, M., 1980, Phytoplankton chlorophyll stocks in the Antarctic Ocean, J. Oceanogr. Soc. Japan, 36:73.

    Article  Google Scholar 

  • Gran, H. H., 1912, Pelagic plant life, Ch. VI, in: “The Depths of the Ocean,” J. Murray, and J. Hjort, eds., McMillan, London.

    Google Scholar 

  • Gran, H. H., 1915, The plankton production in the North European waters in the spring of 1912, Bull. Flankt. Cons. Int. Expl. Mer., 1912.:5.

    Google Scholar 

  • Gran, H. H., 1932, On the conditions for the production of plankton in the sea, Rapp. Cons. Int. Expl. Mer., 75:37.

    Google Scholar 

  • Hagström, Å., Azam, F., Andersson, A., Wikner, J., and Rassoulzadegan, F., 1988, Microbial loop in an oligotrophic pelagic marine ecosystem: Possible roles of cyanobacteria and nanoflagellates in the organic fluxes, Mar. Ecol. Prog. Ser., 49:171.

    Article  Google Scholar 

  • Halldal, P., 1953, Phytoplankton investigations from Weather Ship M in the Norwegian Sea, 1948–49, Norske Vidensk.-Akad. Oslo, Hvalrådets Skr., 38.

    Google Scholar 

  • Hamner, W. M., 1985, The importance of ethology for investigations of marine Zooplankton, Bull. Mar. Sci., 37:414.

    Google Scholar 

  • Hansen, P. J., 1991, Dinophysis: a planktonic dinoflagellate genus which can act both as a prey and a predator of a ciliate, Mar. Ecol. Prog. Ser., 69:201.

    Article  Google Scholar 

  • Hardy, A. C., 1936, Plankton ecology and the theory of animal exclusion, Proc. Linn. Soc., 148:64.

    Article  Google Scholar 

  • Hardy, A. C., 1953, Some problems of pelagic life, in: “Essays in Marine Biology (Richard Elmhirst Memorial Lectures),” S.M. Marshall and A.P. Orr, eds., Oliver and Boyd, Edinburgh.

    Google Scholar 

  • Harris, E., 1959, The nitrogen cycle in Long Island Sound, Bull. Bingham Oceanogr. Coll., 17:31.

    Google Scholar 

  • Harrison, W. G., 1980, Nutrient regeneration and primary production in the sea, in: “Primary Productivity in the Sea,” P.G. Falkowski, ed., Plenum Press, New York.

    Google Scholar 

  • Hart, T. J., 1942, Phytoplankton periodicity in Antarctic surface waters, Discovery Repts., 21:261.

    Google Scholar 

  • Harvey, W. H., 1937, Note on selective feeding by Calanus, J. Mar. Biol. Ass. U.K., 22:97.

    Article  Google Scholar 

  • Harvey, H. W., 1942, Production of life in the sea, Biol. Rev., 17:221.

    Article  CAS  Google Scholar 

  • Harvey, H. W., 1955, “The Chemistry and Fertility of Sea Waters,” Cambridge University Press, Cambridge.

    Google Scholar 

  • Harvey, W. H., Cooper, L. H. N., Lebour, M. V., and Russell, F. S., 1935, Plankton production and its control, J. Mar. Biol. Ass. U.K., 20:407.

    Article  Google Scholar 

  • Hayward, T. L., 1987, The nutrient distribution and primary production in the central North Pacific, Deep-Sea Res., 34:1593.

    Article  CAS  Google Scholar 

  • Hela, I., and Laevastu, T., 1961, “Fisheries Hydrography,” Fishing News, London.

    Google Scholar 

  • Heldal, M., and Bratbak, G., 1991, Production and decay of viruses in aquatic environments, Mar. Ecol. Prog. Ser., 72:205.

    Article  Google Scholar 

  • Hensen, V., 1887, Ueber die Bestimmung des Plankton’s oder des im Meere treibenden Materials an Pflanzen und Tieren, Fünfler Ber. Komm. Unters, dtsch. Meere Kiel (1882 bis 1886), XII-XVI: 1.

    Google Scholar 

  • Hentschel, E., 1932, Die biologischen Methoden und das biologische Beobachtungsmaterial der “Meteor” Expedition, Wiss. Ergebn. Dtsch. Atl. Exp. “Meteor” 1925–1927, 10:1.

    Google Scholar 

  • Hentschel, E., 1933, Allgemeine Biologie des Südatlantischen Ozeans, Das Pelagial der obersten Wasserschicht, Wiss. Ergebn. Dtsch. Atl. Exp. “Meteor” 1925–1927, 11(1. Lief.):1.

    Google Scholar 

  • Hentschel, E., and Wattenberg, H., 1930, Plankton and Phosphat in der Oberflächenschicht des Südatlantischen Ozeans, Ann. Hydrogr., Berlin. 58:273.

    Google Scholar 

  • Hobbie, J. E., Daley, R. J., and Jasper, S., 1977, Use of Nuclepore filters for counting bacteria by fluorescence microscopy, Appl. Environ. Microbiol., 33:1225.

    CAS  PubMed  Google Scholar 

  • Holmes, R. W., 1956, The annual cycle of phytoplankton in the Labrador Sea, 1950-51, Bull. Bingham Oceanogr. Coll., 16:1.

    Google Scholar 

  • Huntley, M. E., Lopez, M. D. G., and Karl, D. M., 1991, Top predators in the Southern Ocean: A major leakin the biological carbon pump, Science, 253:64.

    Article  CAS  PubMed  Google Scholar 

  • Huntley, M. E., Marin, V., and Escritor, F., 1987, Zooplankton grazers as transformers of ocean optics: a dynamic model, J. Mar. Res., 45:911.

    Article  Google Scholar 

  • Jackson, G. A., 1990, A model of the formation of marine algal flocs by physical coagulation processes, Deep-Sea Res., 37:1197.

    Article  CAS  Google Scholar 

  • Jacobson, D. M., and Anderson, D. M., 1986, Thecate heterotrophic dinoflagellates: feeding behaviour and mechanism, J. Phycol., 22:249.

    Article  Google Scholar 

  • Jamart, B. M., Winter, D. F., Banse, K., Anderson, G., C., and Lam, R. K., 1977, A theoretical study of phytoplankton growth and nutrient distribution in the Pacific Ocean off the Northwestern U.S. coast, Deep-Sea Res., 24:753.

    Article  CAS  Google Scholar 

  • Jamart, B. M., Winter, D. F., and Banse, K., 1979, Sensitivity analysis of a mathematical model of phytoplankton growth and nutrient distribution in the Pacific Ocean off the northwestern U.S. coast, J. Plankton Res., 1:267.

    Article  CAS  Google Scholar 

  • Jassby, A. D., and Goldman, C. R., 1974, Loss rates from a lake phytoplankton community, Limnol. Oceanogr., 19:618.

    Article  CAS  Google Scholar 

  • Joint, I. R., and Morris, R. J., 1982, The role of bacteria in the turnover of organic matter in the sea, Oceanogr. Mar. Biol. Ann. Rev., 20:65.

    CAS  Google Scholar 

  • Jumars, P. A., Penry, D. L., Baross, J. A., Pery, M. J., and Frost, B. W., 1989, Closing the microbial loop: Dissolved carbon pathway to heterotrophic bacteria from incomplete ingestion, digestion and absorption in animals, Deep-Sea Res., 36:483.

    Article  CAS  Google Scholar 

  • Kesteven, G. L., and Laevastu, T., 1957–1958, “The Oceanographic Conditions for Life and Abundance of Phytoplankton in Respect to Fisheries,” Food and Agriculture Organization of the United Nations, Fisheries Division, Biology Branch, FAO/57/6/4144 and FAO/58/5/3749 (FB/58/T13).

    Google Scholar 

  • Kjørboe, T., Andersen, K. P., and Dam, H. G., 1990, Coagulation efficiency and aggregate formation in marine phytoplankton, Mar. Biol., 107:235.

    Article  Google Scholar 

  • Knauss, J. A., 1963, Equatorial current systems, in: “The Sea,” Vol. 2, M.N. Hill, ed., Wiley, New York.

    Google Scholar 

  • Kremer, J. N., and Nixon, S. W., 1978, “A Coastal Marine Ecosystem: Simulation and Analysis,” Springer-Verlag, Berlin.

    Book  Google Scholar 

  • Kyle, H. M., 1910, Résumé des observations sur le plankton des mers explorées par le Conseil pendant les années 1902–1908, 1ere partie., Bull. Trimestr. Cons. Int. Expl. Mer.

    Google Scholar 

  • Lampert, W., 1987, Vertical migration of freshwater Zooplankton: Indirect effects of vertebrate predators on algal communities, in: “Predation: Direct and Indirect Impacts on Aquatic Communities,” W.C. Kerfoot, and A. Sih, eds., University Press of New England.

    Google Scholar 

  • Lancelot, C., 1983, Factors affecting phytoplankton extracellular release in the Southern Bight of the North Sea, Mar. Ecol. Prog. Ser., 12:115–121.

    Article  Google Scholar 

  • Lancelot, C., and Billen, G. 1985. Carbon-nitrogen relationships in nutrient metabolism of coastal marine ecosystems, in: “Advances in Aquatic Microbiology,” Vol. 3, H.W. Jannasch, and P.J.L. Williams, eds., Academic Press, London.

    Google Scholar 

  • Landry, M. R., and Hassett, R. P., 1982, Estimating the grazing impact of marine micro-zooplankton, Mar. Biol., 67:283.

    Article  Google Scholar 

  • Laws, E. A., DiTullio, G. R., and Redalje, D. G., 1987, High phytoplankton growth and production rates in the North Pacific subtropical gyre, Limnol. Oceanogr., 32:905.

    Article  Google Scholar 

  • Lessard, E. J., 1991, The trophic role of heterotrophic dinoflagellates in diverse marine environments, Mar. Microb. Food Webs, 5:49.

    Google Scholar 

  • Lessard, E. J., and Swift, E., 1985, Species-specific grazing rates of heterotrophic dinoflagellates in oceanic waters, measured with a dual-label radioisotope technique, Mar. Biol., 87:289.

    Article  Google Scholar 

  • Levitus, S., 1982, “Climatological Atlas of the World Ocean,” U.S. Dept. of Commerce, Natl. Oceanic Atmosph. Admin., NOAA Prof. Pap. 13, 173 pp.

    Google Scholar 

  • Lewis, M., this volume.

    Google Scholar 

  • Lohmann, H., 1903, Neue Untersuchungen über den Reichthum des Meeres an Plankton und über die Brauchbarkeit der verschiedenen Fangmethoden, Wiss. Meeresunters., Abt. Kiel, N.F. 7:1.

    Google Scholar 

  • Lohmann, H., 1908, Untersuchungen zur Festellung des vollständigen Gehaltes des Meeres an Plankton, Wiss. Meeresunters., Abt. Kiel, N. F. 10:129.

    Google Scholar 

  • Lohmann, H., 1912, Untersuchungen über das Pflanzen-und Tierleben der Hochsee, Veröff. Inst. Meeresk. Univ. Berlin, N.F. A.1:1.

    Google Scholar 

  • Lohmann, H., 1920, Die Bevölkerung des Ozeans mit Plankton nach den Ergebnissen der Zentrifugenfänge während der Ausreise der “Deutschland” 1911, Arch. Biontol. 4(3):1.

    Google Scholar 

  • Longhurst, A. R., and Williams, R., 1979, Materials for plankton modelling: Vertical distribution of Atlantic Zooplankton in summer, J. Plankton Res., 1:1.

    Article  Google Scholar 

  • Love, C. M., 1970, “EASTROPAC Atlas”, Vol. 4, U.S. Fish Wildl. Serv. Circ., 330.

    Google Scholar 

  • Love, C. M., 1974, “EASTROPAC Atlas”, Vol. 8, U.S. Fish Wildl. Serv. Circ, 330.

    Google Scholar 

  • Martin, J. H., Gordon, R. M., Fitzwater, S. E., and Broenkow, W. W., 1989, VERTEX: phytoplankton/iron studies in the Gulf of Alaska, Deep-Sea Res., 36:649.

    Article  CAS  Google Scholar 

  • Martin, J. H., Fitzwater, S. E., and Gordon, R. M., 1990, Iron deficiency limits phytoplankton growth in Antarctic waters, Global Biogeochem. Cycles, 4:5.

    Article  CAS  Google Scholar 

  • McAllister, C. D., 1969, Aspects of estimating Zooplankton production from phytoplankton production, J. Fish. Res. Bd. Canada, 26:199.

    Article  Google Scholar 

  • Menzel, D. W., and Ryther, J. H., 1961, Annual variations in primary production of the Sargasso sea off Bermuda, Deep-Sea Res., 7:282.

    Article  Google Scholar 

  • Mills, E. L., 1989, “Biological Oceanography: An Early History, 1870–1960,” Cornell University Press, Ithaca, NY.

    Google Scholar 

  • Mullin, M. M., 1963, Some factors affecting the feeding of marine copepods of the genus Calanus, Limnol. Oceanogr., 8:239.

    Article  Google Scholar 

  • Murdoch, W. M., 1966, “Community structure, population control, and competition”—a critique, Amer. Nat., 100:219.

    Article  Google Scholar 

  • Nathanson, A., 1908, Beiträge zur Biologie des Plankton, I. Über die allgemeinen Produktionsbedingungen im Meere, Intern. Rev. ges. Hydrobiol, 1:37.

    Article  Google Scholar 

  • Paffenhöfer, G. A., 1988, Feeding rates and behavior of Zooplankton, Bull Mar. Sci., 43:430.

    Google Scholar 

  • Peña, M. A., Lewis, M. R., and Harrison, W. G., 1990, Primary productivity and size structure of phytoplankton biomass on a transect of the equator at 135°W in the Pacific Ocean, Deep-Sea Res., 37:295.

    Article  Google Scholar 

  • Pena, M. A., Lewis, M. R., and Harrison, W. G., 1991, Particulate organic matter and chlorophyll in the surface layer of the equatorial Pacific Ocean along 135°W, Mar. Ecol. Prog. Ser., 72:179.

    Article  Google Scholar 

  • Platt, T., and Harrison, W. G., 1985, Biogenic fluxes of carbon and oxygen in the ocean, Nature, 318:55.

    Article  CAS  Google Scholar 

  • Platt, T., Harrison, W. G., Lewis, M. R., Li, W. K. W., Sathyendranath, S., Smith, R. E., and Vézina, A. F., 1989, Biological production of the oceans: The case for a consensus, Mar. Ecol. Prog. Ser., 52:77.

    Article  Google Scholar 

  • Pomeroy, L. R., 1974, The ocean’s food web, a changing paradigm, BioScience, 24:499.

    Article  Google Scholar 

  • Pomeroy, L. R., 1984, Significance of microorganisms in carbon and energy flow in marine ecosystems, in: “Current Perspectives in Micobial Ecology,” J.M. Klug and C.A. Reddy, eds., Am. Soc. Microbiol., Washington.

    Google Scholar 

  • Pomeroy, L. R., and Wiebe, W. J., 1988, Energetics of microbial food webs, Hydrobiologia, 159:7.

    Article  Google Scholar 

  • Porter, K. G., and Feig, Y. S., 1980, The use of DAPI for identifying and counting aquatic microflora, Limnol. Oceanogr., 25:943.

    Article  Google Scholar 

  • Poulet, S. A., Williams, R., Conway, D. V. P., and Videau, C., 1991, Co-occurrence of copepods and dissolved free amino acides in shelf sea waters, Mar. Biol., 108:373.

    Article  CAS  Google Scholar 

  • Price, H. J., 1988, Feeding mechanisms in marine and freshwater plankton, Bull. Mar. Sci., 43:327.

    Google Scholar 

  • Proctor, L. A., and Fuhrman, J. A., 1990, Viral mortality of marine bacteria and cyanobacteria, Nature, 343:60.

    Article  Google Scholar 

  • Pütter, A., 1926, Die Ernährung der Copepoden, Arch. Hydrobiol., 15:70.

    Google Scholar 

  • Riebesell, U., 1991, Particle aggregation during a diatom bloom, II. Biological aspects, Mar. Ecol. Prog. Ser., 69:281.

    Article  Google Scholar 

  • Riemann, B., Jørgensen, N. O. G., Lampert, W., and Fuhrman, J. A., 1986, Zooplankton induced changes in dissolved free amino acids and in production rates of freshwater bacteria, Microb. Ecol., 12:247–258.

    Article  CAS  Google Scholar 

  • Riemann, B., and Søndergaard, M., 1986, Bacteria, in: “Carbon Dynamics in Eutrophic, Temperate Lakes,” B. Riemann, and M. Søndergaard, eds., Elsevier, Amsterdam.

    Google Scholar 

  • Rigler, F. H., 1975, The concept of energy flow and nutrient flow between trophic levels, in: “Unifying Concepts in Ecology,” W.H. van Dobben, and R.H. Lowe-McConnell, eds., Junk, The Hague.

    Google Scholar 

  • Riley, G. A., 1946, Factors controlling phytoplankton populations on Georges Bank, J. Mar. Res., 6:54.

    Google Scholar 

  • Riley, G. A., 1956, Oceanography of Long Island Sound, 1952–1954, IX. Production and utilization of organic matter, Bull. Bingham Oceanogr. Coll., 15:324.

    Google Scholar 

  • Riley, G. A., 1957, Phytoplankton of the North Central Sargasso Sea, 1950–52, Limnol. Oceanogr., 2:252.

    Google Scholar 

  • Riley, G. A., 1965, A mathematical model of regional variations in plankton, Limnol. Oceanogr., 10 (Suppl.):202.

    Article  Google Scholar 

  • Riley, G. A., 1976, A model of plankton patchiness, Limnol. Oceanogr., 21:873.

    Article  Google Scholar 

  • Riley, G. A., 1967, The plankton of estuaries, in: “Estuaries,” G.H. Lauff, ed., Amer. Assoc. Adv. Sci., Publ., 83.

    Google Scholar 

  • Riley, G. A., Stommel, H., and Bumpus, D. F., 1949, Quantitative ecology of the plankton of the western North Atlantic, Bull. Bingham Oceanogr. Coll., 12(3):1.

    Google Scholar 

  • Roman, M. R., Yentsch, C. S., Gauzens, A. L., and Phinney, D. A., 1986, Grazer control of the fine-scale distribution of phytoplankton in warm-core Gulf Stream rings, J. Mar. Res., 44:795.

    Article  Google Scholar 

  • Ryther, J. H., and Hulburt, E. M., 1960, On winter mixing and the vertical distribution of phytoplankton, Limnol. Oceanogr., 5:337.

    Article  Google Scholar 

  • Sharp, J. H., 1991, Review of carbon, nitrogen, and phosphorus biogeochemistry, Rev. Geophys., (Suppl.) Apr. 91:648.

    Google Scholar 

  • Shulenberger, E., 1978, The deep chlorophyll maximum and mesoscale environmental heterogeneity in the western half of the North Pacific central gyre, Deep-Sea Res., 25:1193.

    Article  CAS  Google Scholar 

  • Silver, M. W., Gowing, M. M., and Davoll, P. J., 1986, The association of photosynthetic picoplankton and ultraplankton with pelagic detritus through the water column (0–2000 m), in: “Photosynthetic Picoplankton,” T. Platt, and W. K. W. Li, eds., Can. Bull. Fish. Aquat. Sci., 214:311.

    Google Scholar 

  • Small, L. F., Landry, M. R., Eppley, R. W., Azam, F., and Carlucci, A. F., 1989, Role of plankton in the carbon and nitrogen budgets of Santa Monica Basin, California, Mar. Ecol. Prog. Ser., 56:57.

    Article  CAS  Google Scholar 

  • Smayda, T. J., 1966, A quantitative analysis of the phytoplankton of the Gulf of Panama. III. General ecological conditions, and the phytoplankton dynamics at 8°45’N, 79°23’W from November 1954 to May 1957, Bull. Inter-Amer. Trop. Tuna Comm., 11:353.

    Google Scholar 

  • Smetacek, V., and Passow, U., 1990, Spring bloom initiation and Sverdrup’s critical-depth model, Limnol. Oceanogr., 35:228.

    Article  Google Scholar 

  • Smetacek, V., Scharek, R., and Nöthig, E. M., 1990, Seasonal and regional variation in the pelagial and its relationship to the life history cycle of krill, in: “Antarctic Ecosystems, Ecological Change and Conservation,” K.R. Kerry, and G. Hempel, eds., Springer-Verlag, Berlin.

    Google Scholar 

  • Staley, J. T., and Konopka, A., 1985, Measurement of in situ activities of nonphotosynthetic microorganisms in aquatic and terrestrial habitats, Ann. Rev. Microbiol., 39:321.

    Article  CAS  Google Scholar 

  • Steele, J. H., 1958, Plant production in the northern North Sea, Scot. Home Dept., Mar. Res., 1958(7):1.

    Google Scholar 

  • Steele, J. H., 1974, “The Structure of Marine Ecosystems,” Harvard University Press, Cambridge, MA.

    Google Scholar 

  • Steemann Nielsen, E., 1933, Über quantitative Untersuchung von marinem Plankton mit Utermöhls umgekehrten Mikroskop, J. Cons. Int. Expl. Mer, 8:201.

    Google Scholar 

  • Steemann Nielsen, E., 1940, Die Produktionsbedingungen des Phytoplanktons im Übergangsgebiet zwischen der Nord-und Ostsee, Medd. Komm. Danmarks Fisk.-Havunders., Ser. Plankton, 3(4): 1.

    Google Scholar 

  • Steemann Nielsen, E., 1958, The balance between phytoplankton and Zooplankton in the sea, J. Cons. Int. Expl. Mer., 23:178.

    Google Scholar 

  • Steemann Nielsen, E., 1962, The relationship between phytoplankton and Zooplankton in the sea, Rapp. Cons. Int. Expl. Mer., 153:178.

    Google Scholar 

  • Strathmann, R. R., 1967, Estimating the organic carbon content of phytoplankton from cell volume or plasma volume, Limnol. Oceanogr., 12:411.

    Article  CAS  Google Scholar 

  • Strom, S. L., and Welschmeyer, N. A., 1991, Pigment-specific rates of phytoplankton growth and microzooplankton grazing in the open subarctic Pacific, Limnol. Oceanogr., 36:50.

    Article  Google Scholar 

  • Sverdrup, H. U., 1953, On conditions for the vernal blooming of phytoplankton, J. Cons. Int. Expl. Mer., 18:287.

    Google Scholar 

  • Swift, E., Stuart, M., and Meunier, V., 1976, The in situ growth rates of some deep-living oceanic dinoflagellates: Pyrocystis fusiformis and Pyrocystis noctiluca, Limnol. Oceanogr., 21:418.

    Article  CAS  Google Scholar 

  • Taylor, G. T., Iturriaga, R., and Sullivan, C. W., 1985, Interactions of bactivorous grazers and heterotrophic bacteria with dissolved organic matter, Mar. Ecol. Prog. Ser., 23:129.

    Article  Google Scholar 

  • Turner, J. T., and Tester, P. A., 1989, Zooplankton feeding ecology: Nonselective grazing by the copepods Acartia tonsa Dana, Centropages velificatus De Oliveira, and Eucalanus pileatus Giesbrecht in the plume of the Mississippi River, J. Exp. Mar. Biol. Ecol, 126:21.

    Article  Google Scholar 

  • Utermöhl, H., 1931, Neue Wege in der quantitativen Erfassung des Planktons (mit besonderer Berücksichtigung des Ultraplanktons), Verh. int. Ver. theor. angew. Limnol., 5:567.

    Google Scholar 

  • Verity, P. G., 1985, Grazing, respiration, excretion, and growth rates of tintinnids. Limnol. Oceanogr., 30:1268.

    Article  Google Scholar 

  • Vézina, A. F., and Platt, T., 1988, Food web dynamics in the ocean, I. Best-estimates of flow networks using inverse methods, Mar. Ecol. Prog. Ser., 42:269.

    Article  Google Scholar 

  • Vinogradov, M. E., Krapivin, V. F., Menshutkin, V. V., Fleyshman, B. S., and Shushkina, E. A., 1973, Mathematical model of the functions of the pelagial ecosystem in tropical regions (from the 50th voyage of the R/V VITYAZ), Oceanology, 13:704.

    Google Scholar 

  • Vinogradov, M. E., and Menshutkin, V. V., 1977, The modeling of open-sea ecosystems, in: “The Sea,” Vol. 6, E.D. Goldberg et al., eds., Wiley, New York.

    Google Scholar 

  • Walsh, J. J., 1976, Herbivory as a factor in patterns of nutrient utilization in the sea, Limnol. Oceanogr., 21:1.

    Article  Google Scholar 

  • Walsh, J. J., 1977, A biological sketchboo&for an eastern boundary current, in: “The Sea,” E.D. Goldberg et al., eds., Vol 6, Wiley, New York.

    Google Scholar 

  • Wassmann, P., Vernet, M., Mitchell, B. G., and Rey, F., 1990, Mass sedimentation of Phaeocystis pouchetii in the Barents Sea, Mar. Ecol. Prog. Ser., 66:183.

    Article  CAS  Google Scholar 

  • Weisse, T., and Scheffel-Möser, U., 1991, Uncoupling the microbial loop: Growth and grazing loss rates of bacteria and heterotrophic nanoflagellates in the North Atlantic, Mar. Ecol. Prog. Ser., 71:195.

    Article  Google Scholar 

  • Welschmeyer, N. A., and Lorenzen, C. J., 1985, Chlorophyll budgets: Zooplankton grazing and phytoplankton growth in a temperate fjord and the central Pacific gyres, Limnol. Oceanogr., 30:1.

    Article  CAS  Google Scholar 

  • Williams, P. J. leB., 1981, Incorporation of microheterotrophic processes into the classical paradigm of the planktonic foodweb, Kieler Meeresforsch., Sonderh., 5:1.

    Google Scholar 

  • Wolter, K., 1982, Bacterial incorporation of organic substances released by natural phytoplankton populations, Mar. Ecol. Prog. Ser., 7:287.

    Article  Google Scholar 

  • Wyrtki, K., 1990, Becoming an oceanographer forty years ago, Oceanography, 3:39.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

Banse, K. (1992). Grazing, Temporal Changes of Phytoplankton Concentrations, and the Microbial Loop in the Open Sea. In: Falkowski, P.G., Woodhead, A.D., Vivirito, K. (eds) Primary Productivity and Biogeochemical Cycles in the Sea. Environmental Science Research, vol 43. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0762-2_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0762-2_22

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-0764-6

  • Online ISBN: 978-1-4899-0762-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics