Advertisement

Regeneration of Nutrients

  • William G. Harrison
Part of the Environmental Science Research book series (ESRH, volume 43)

Abstract

In the ten years since this subject was last reviewed (Harrison, 1980), significant progress has been made in understanding remineralization processes in the sea, where they occur, which organisms are responsible, and what role regenerated nutrients play in primary productivity. A proliferation of research on oceanic nutrient cycles in the 80s produced numerous excellent books and review papers on the subject (Morris, 1980; Platt, 1981; Williams, 1981; Fogg, 1982; Azam et al., 1983; Carpenter and Capone, 1983; Ducklow, 1984; Fasham, 1984; Smetacek and Pollehne, 1986; Blackburn and Sϕrensen, 1988). Most of this literature has emphasized small scale to mesoscale processes within the oceanic euphotic zone and focussed on the role of microbial communities and their components in nutrient regeneration.

Keywords

Dissolve Organic Matter Dissolve Organic Matter Sediment Trap Euphotic Zone Regeneration Efficiency 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alldredge, A. L. and Cohen, Y., 1987, Can microscale chemical patches persist in the sea? Microelectrode study of marine snow, fecal pellets, Science, 235:689.PubMedCrossRefGoogle Scholar
  2. Alldredge, A. L. and Silver, M. W., 1988, Characteristics, dynamics and significance of marine snow, Prog. Oceanogr., 20:41.CrossRefGoogle Scholar
  3. Altabet, M. A., 1989, Particulate new nitrogen fluxes in the Sargasso Sea, J. Geophys. Res., 94:12,771.Google Scholar
  4. Anderson, O. K., Goldman, J. C., Caron, D. A., and Dennett, M. R., 1986, Nutrient cycling in a microflagellate food chain. III. Phosphorus dynamics, Mar. Ecol. Prog. Ser., 31, 47.CrossRefGoogle Scholar
  5. Azam, F. and Ammerman, J. W., 1984, Cycling of organic matter by bacterioplankton in pelagic marine ecosystems: microenvironmental considerations, in: “Flows of Energy and Materials in Marine Ecosystems,” M.J.R. Fasham, ed., Plenum Press, London.Google Scholar
  6. Azam, F., Fenchel, T., Field, J. G., Gray, J. S., Meyer-Reil, L. A., and Thingstad, F., 1983, The ecological role of water-column microbes in the sea, Mar. Ecol. Prog. Ser., 10:257.CrossRefGoogle Scholar
  7. Azam, F. and Hodson, R. E., 1977, Size distribution and activity of marine microheterotrophs, Limnol. Oceanogr., 22:492–501.CrossRefGoogle Scholar
  8. Banse, K., 1990, New views on the degradation and disposition of organic particles as collected by sediment traps in the open sea, Deep-Sea Res., 37:1177.CrossRefGoogle Scholar
  9. Berger, W. H., 1989, Appendix. Global maps of Ocean Productivity, in: “Productivity of the Ocean: Present and Past,” W.H. Berger, V.C. Smetacek and G. Wefer, eds., John Wiley & Sons, Chichester.Google Scholar
  10. Berger, W. H., Fischer, K., Lai, C., and Wu, G., 1987, Oceanic productivity and organic carbon flux. Part 1. Overview and maps of primary production and export production. Univ. of California, San Diego, SIO Reference 87-30.Google Scholar
  11. Berger, W. H., Smetacek, V. S., and Wefer, G., 1989, Ocean productivity and paleoproductivity-an overview, in: “Productivity of the Ocean: Present and Past,” W.H. Berger, V.S. Smetacek and G. Wefer, eds., John Wiley & Sons, Chichester.Google Scholar
  12. Berman, T., 1991, Protozoans as agents in planktonic nutrient cycling, in: “Protozoa and Their Role in Marine Processes,” P.C. Reid, CM. Turley and P.H. Burkill, eds., Springer-Verlag, Berlin.Google Scholar
  13. Berman, T., Nawrocki, M., Taylor, G. T., and Karl, D. M., 1987, Nutrient flux between bacteria, bactivorous nanoplanktonic protists and algae, Mar. Microbial Food Webs, 2:69.Google Scholar
  14. Bidigare, R. R., 1983, Nitrogen excretion by marine Zooplankton, in: “Nitrogen in the Marine Environment,” E.J. Carpenter and D.C. Capone, eds., Academic Press, New York.Google Scholar
  15. Bigg, G. R., Jickells, T. D., Knap, A. H., and Serriff-Dow, R., 1989, The significance of short term wind induced mixing events for “new” primary production in subtropical gyres, Oceanol. Acta, 12:437.Google Scholar
  16. Billen, G., 1984, Heterotrophic utilization and regeneration of nitrogen, in: “Heterotrophic Activity in the Sea,” J.E. Hobbie and P.J. LeB. Williams, eds., Plenum Press, New York.Google Scholar
  17. Blackburn, T. H. and Sϕrensen, J., 1988, “Nitrogen Cycling in Coastal Marine Environments,” John Wiley & Sons, Chichester.Google Scholar
  18. Bratbak, G. and Thingstad, T. F., 1985, Phytoplankton-bacteria interactions: an apparent paradox? Analysis of a model system with both competition and commensalism, Mar. Ecol. Prog. Ser., 25:23.CrossRefGoogle Scholar
  19. Caperon, J., Schell, D., Hirota, J., and Laws, E., 1979, Ammonium excretion rates in Kaneohe Bay, Hawaii, measured by a 15N-isotope dilution technique, Mar. Biol., 54:33.CrossRefGoogle Scholar
  20. Caron, D. A., 1991, Evolving role of protozoa in aquatic nutrient cycles, in: “Protozoa and Their Role in Marine Processes,” P.C. Reid, CM. Turley and P.H. Burkill, eds., Springer-Verlag, Berlin.Google Scholar
  21. Caron, D. A., Davis, P. G., Madin, L. P., and Sieburth, J. McN., 1982, Heterotrophic bacteria and bactivorous protozoa in oceanic macroaggregates, Science, 218, 795.PubMedCrossRefGoogle Scholar
  22. Caron, D. A. and Goldman, J. C., 1988, Dynamics of protistan carbon and nutrient cycling, J. Protozool., 35:247.Google Scholar
  23. Caron, D. A. and Goldman, J. C., 1990, Protozoan nutrient regeneration, in: “Ecology of Marine Protozoa,” G.M. Capriulo, ed., Oxford University Press, New York.Google Scholar
  24. Caron, D. A., Goldman, J. C., Anderson, O. K., and Dennett, M. R., 1985, Nutrient cycling in a microflagellate food chain: II. Population dynamics and carbon cycling, Mar. Ecol. Prog. Ser., 24:243.CrossRefGoogle Scholar
  25. Caron, D. A., Goldman, J. C., and Dennett, M. R., 1988, Experimental demonstration of the role of bacteria and bactivorous protozoa in plankton nutrient cycles, Hydrobiol., 159:27.CrossRefGoogle Scholar
  26. Carpenter, E. J. and Capone, D. G., 1983, “Nitrogen in the Marine Environment,” Academic Press, New York.Google Scholar
  27. Cho, B. C. and Azam, F., 1988, Major role of bacteria in biogeochemical fluxes in the ocean’s interior, Nature, 332:441.CrossRefGoogle Scholar
  28. Cochlan, W. P., 1986, Seasonal study of uptake and regeneration of nitrogen on the Scotian Shelf, Cont. Shelf. Res., 5:555.CrossRefGoogle Scholar
  29. Currie, D. J., 1984, Microscale nutrient patches: Do they matter to the phytoplankton?, Limnol. Oceanogr., 29:211.CrossRefGoogle Scholar
  30. Ducklow, H. W., 1984, Geographical ecology of marine bacteria: physical and biological variability at the mesoscale, in: “Current Perspectives in Microbial Ecology,” M.J. Klug and C.A. Reddy, eds., Am. Soc. Microbiol., Washington, D.C.Google Scholar
  31. Ducklow, H. W., Fasham, M. J. R., and Vezina, A. F., 1989, Derivation and analysis of flow networks for open ocean plankton systems, in: “Network Analysis in Marine Ecology,” F. Wulff, J.G. Field and K.H. Mann, eds., Springer-Verlag, Berlin.Google Scholar
  32. Ducklow, H. W. and Taylor, A. H., 1991, Modelling — session summary, in: “Protozoa and Their Role in Marine Processes,” P.C., Reid, C.M. Turley and P.H. Burkill, eds., Springer-Verlag, Berlin.Google Scholar
  33. Dugdale, R. C. and Goering, J. J., 1967, Uptake of new and regenerated forms of nitrogen in primary productivity. Limnol. Oceanogr., 12:196.CrossRefGoogle Scholar
  34. Eppley, R. W., 1981, Autotrophic production of particulate matter, in: “Analysis of Marine Ecosystems,” A.R. Longhurst, ed., Academic Press, London.Google Scholar
  35. Eppley, R. W., 1989, New production: history, methods, problems, in: “Productivity of the Ocean: Present and Past,” W.H. Berger, V.S. Smetacek and G. Wefer, eds., John Wiley & Sons, Chichester.Google Scholar
  36. Eppley, R. W. and Peterson, B. J., 1979, Particulate organic matter flux and planktonic new production in the deep ocean, Nature, 282, 677.CrossRefGoogle Scholar
  37. Eppley, R. W., Sharp, J. H., Renger, E. H., Perry, M. J., and Harrison, W. G., 1977, Nitrogen assimilation by phytoplankton and other microorganisms in the surface waters of the Central North Pacific, Mar. Biol., 39, 111.CrossRefGoogle Scholar
  38. Falkowski, P. G., 1980, “Primary Productivity in the Sea,” Plenum Press, New York.CrossRefGoogle Scholar
  39. Fasham, M. J. R., 1984, “Flows of Energy and Materials in Marine Ecosystems,” Plenum Press, London.CrossRefGoogle Scholar
  40. Fasham, M. J. R., Ducklow, H. W., and McKelvie, S. M., 1990, A nitrogen-based model of plankton dynamics in the oceanic mixed layer, J. Mar. Res., 48:591.CrossRefGoogle Scholar
  41. Fenchel, T., 1988, Microfauna in pelagic food chains, in: “Nitrogen Cycling in Coastal Marine Environments,” T.H. Blackburn and J. Sorensen, eds., John Wiley & Sons, Chichester.Google Scholar
  42. Fogg, G. E., 1982, Nitrogen cycling in sea waters, Phil. Trans. R. Soc. Lond. B., 296:511.CrossRefGoogle Scholar
  43. Frost, B. W., 1987, Grazing control of phytoplankton stock in the open subarctic Pacific Ocean: a model assessing the role of mesozooplankton, particularly the large calanoid copepods Neocalanus spp., Mar. Ecol. Prog. Ser., 39:49.CrossRefGoogle Scholar
  44. Fuhrman, J., 1987, Close coupling between release and uptake of dissolved free amino acids in seawater studied by an isotope dilution approach, Mar. Ecol. Prog. Ser., 37:45.CrossRefGoogle Scholar
  45. Fuhrman, J. A., Horrigan, S. G., and Capone, D. G., 1988, Use of 13N as a tracer for bacterial and algal uptake of ammonium from seawater, Mar. Ecol. Prog. Ser., 45:271.CrossRefGoogle Scholar
  46. Gast, V. and Horstmann, U., 1983, N-remineralization of phyto-and bacterioplankton by the marine ciliate Euplotes vannus, Mar. Ecol. Prog. Ser., 13:55.CrossRefGoogle Scholar
  47. Glibert, P. M., 1982, Regional studies of daily, seasonal and size fraction variability in ammonium remineralization, Mar. Biol., 70:209.CrossRefGoogle Scholar
  48. Glibert, P. M., Dennett, M. R., and Caron, D. A., 1988, Nitrogen uptake and NH4 regeneration by pelagic microplankton and marine snow from the North Atlantic, J. Mar. Res., 46:837.CrossRefGoogle Scholar
  49. Glibert, P. M., Goldman, J. C., and Carpenter, E. J., 1982a, Seasonal variation in the utilization of ammonium and nitrate by phytoplankton in Vineyard Sound, Massachusetts, USA. Mar. Biol., 70:237.CrossRefGoogle Scholar
  50. Glibert, P. M., Lipschultz, F., McCarthy, J. J., and Altabet, M. A., 1982b, Isotope dilution models of uptake and remineralization of ammonium by marine plankton. Limnol. Oceanogr., 27:639.CrossRefGoogle Scholar
  51. Glover, H. E., Prezelin, B. B., Campbell, L., Wyman, M., and Garside, C., 1988, A nitrate-dependent Synechococcus bloom in surface Sargasso Sea water, Nature, 331:161.CrossRefGoogle Scholar
  52. Goldman, J. C., 1984a, Oceanic nutrient cycles, in: “Flows of Energy and Materials in Marine Ecosystems: Theory and Practice,” M.J. Fasham, ed., Plenum Press, New York.Google Scholar
  53. Goldman, J. C., 1984b, Conceptual role for for microaggregates in pelagic waters. Bull. Mar. Sci., 35:462.Google Scholar
  54. Goldman, J. C., 1988, Spatial and temporal discontinuities of biological processes in pelagic surface waters, in: “Toward a Theory on Biological-Physical Interactions in the World Ocean,” B.J. Rothschild, ed., Kluwer Academic Publishers.Google Scholar
  55. Goldman, J. C. and Caron, D. A., 1985, Experimental studies on an omnivorous microflagellate: implications for grazing and nutrient regeneration in the marine microbial food chain, Deep-Sea Res., 32:899.CrossRefGoogle Scholar
  56. Goldman, J. C., Caron, D. A., Anderson, O. K., and Dennett, M. R., 1985, Nutrient cycling in a microflagellate food chain: I. nitrogen dynamics, Mar. Ecol. Prog. Ser., 24:231.CrossRefGoogle Scholar
  57. Goldman, J. C., Caron, D. A., and Dennett, M. R., 1987a, Regulation of gross growth efficiency and ammonium regeneration in bacteria by substrate C:N ratio. Limnol. Oceanogr., 32:1239.CrossRefGoogle Scholar
  58. Goldman, J. C., Caron, D. A., and Dennett, M. R., 1987b, Nutrient cycling in a microflagellate food chain: IV. Phytoplankton-microflagellate interactions. Mar. Ecol. Prog. Ser., 38:75.CrossRefGoogle Scholar
  59. Goldman, J. C. and Dennett, M. R., 1991, Ammonium regeneration and carbon utilization by marine bacteria grown on mixed substrates, Mar. Biol., In press.Google Scholar
  60. Gotschalk, C. C. and Alldredge, A. L., 1989, Enhanced primary production and nutrient regeneration within aggregated marine diatoms, Mar. Biol., 103:119.CrossRefGoogle Scholar
  61. Hansell, D. A. and Goering, J. J., 1989, A method for estimating uptake and production rates for urea in seawater using [14C] urea and [15N] urea, Can. J. Fish. Aq. Sci., 46:198.CrossRefGoogle Scholar
  62. Hanson, R. B. and Robertson, C. Y., 1988, Spring recycling of ammonium in turbid continental shelf waters off the southeastern United States, Cont. Shelf Res., 8:49.CrossRefGoogle Scholar
  63. Hanson, R. B., Robertson, C. Y., Yoder, J. A., Verity, P. G., and Bishop, S. S., 1990, Nitrogen recycling in coastal waters of southeastern U.S. during summer 1986, J. Mar. Res., 48:641.CrossRefGoogle Scholar
  64. Harris, E., 1959, The nitrogen cycle in Long Island Sound, Bull. Bingham Oceanogr. Collect., 17:31.Google Scholar
  65. Harrison, W. G., 1978, Experimental measurements of nitrogen remineralization in coastal waters, Limnol. Oceanogr., 23:684.CrossRefGoogle Scholar
  66. Harrison, W. G., 1980, Nutrient regeneration and primary production in the sea, in: “Primary Productivity in the Sea,” P.G. Falkowski, ed., Plenum Press, New York.Google Scholar
  67. Harrison, W. G., 1983a, Uptake and recycling of soluble reactive phosphorus by marine microplankton. Mar. Ecol. Prog. Ser., 10:127.CrossRefGoogle Scholar
  68. Harrison, W. G., 1983b, Use of isotopes, in: “Nitrogen in the Marine Environment,” E.J. Carpenter and D.G. Capone, eds., Academic Press, New York.Google Scholar
  69. Harrison, W. G., 1990, Nitrogen utilization in chlorophyll and primary productivity maximum layers: an analysis based on the f-ratio, Mar. Ecol. Prog. Ser., 60:85.CrossRefGoogle Scholar
  70. Harrison, W. G. and Cota, G. F., 1991, Primary production in polar waters: relation to nutrient availability, Polar Res., In press.Google Scholar
  71. Harrison, W. G., Douglas, D., Falkowski, P., Rowe, G., and Vidal, J., 1983, Summer nutrient dynamics of the Middle Atlantic Bight: nitrogen uptake and regeneration, J. Plankt. Res., 5:539.CrossRefGoogle Scholar
  72. Hopkinson, C. S., Jr., Sherr, B. F., and Ducklow, H. W., 1987, Microbial regeneration of ammonium in the water column of Davies Reef, Australia, Mar. Ecol. Prog. Ser., 41:147.CrossRefGoogle Scholar
  73. Jackson, G. A., 1980, Phytoplankton growth and Zooplankton grazing in oligotrophic oceans, Nature, 284:439.CrossRefGoogle Scholar
  74. Jackson, G. A., 1987, Simulating chemosensory responses of marine microorganisms, Limnol. Oceanogr., 32:1253.CrossRefGoogle Scholar
  75. Jackson, G. A., 1988, Implications of high dissolved organic matter concentrations for oceanic properties and processes, Oceanogr., 1:28.CrossRefGoogle Scholar
  76. Jahnke, R. A., 1990, Ocean flux studies: a status report, Rev. Geophys., 28:381.CrossRefGoogle Scholar
  77. Jahnke, R. A. and Jackson, G. A., 1987, Role of sea floor organisms in oxygen consumption in the deep North Pacific Ocean, Nature, 329:621.CrossRefGoogle Scholar
  78. Jenkins, W. J., 1982, Oxygen utilization rates in North Atlantic subtropical gyre and primary production in oligotrophic systems, Nature, 300:246.CrossRefGoogle Scholar
  79. Jenkins, W. J., 1988a, Nitrate flux into the euphotic zone near Bermuda. Nature, 331:521.CrossRefGoogle Scholar
  80. Jenkins, W. J., 1988b, The use of anthropogenic tritium and helium-3 to study subtropical gyre ventilation and circulation. Phil. Trans. R. Soc, London, Ser. A, 325:43.CrossRefGoogle Scholar
  81. Jenkins, W. J. and Goldman, J. C., 1985, Seasonal oxygen cycling and primary productivity in the Sargasso Sea, J. Mar. Res., 43:465.CrossRefGoogle Scholar
  82. Johannes, R. E., 1964, Phosphorus excretion as related to body size in marine animals: the significance of nannozooplankton in nutrient regeneration, Science, 146:923.PubMedCrossRefGoogle Scholar
  83. Johannes, R. E., 1965, Influence of marine protozoa on nutrient regeneration, Limnol. Oceanogr., 10:434.CrossRefGoogle Scholar
  84. Karl, D. M., Knauer, G. A., and Martin, J. H., 1988, Downward flux of particulate organic matter in the ocean: a particle decomposition paradox, Nature, 332:438.CrossRefGoogle Scholar
  85. Kepkay, P. E. and Johnson, B. D., 1989, Coagulation on bubbles allows microbial respiration of oceanic dissolved organic carbon, Nature, 338:63.CrossRefGoogle Scholar
  86. King, F. D., 1984, Vertical distribution of Zooplankton glutamate dehydrogenase in relation to chlorophyll in the vicinity of the Nantucket Shoals, Mar. Biol., 79:249.CrossRefGoogle Scholar
  87. King, F. D., 1987, Nitrogen recycling efficiency in steady state oceanic environments, Deep-Sea Res., 34:843.CrossRefGoogle Scholar
  88. Kirchman, D. L., Keil, R. G., and Wheeler, P. A., 1989, The effect of amino acids on ammonium utilization and regeneration by heterotrophic bacteria in the subarctic Pacific, Deep-Sea Res., 36:1763.CrossRefGoogle Scholar
  89. Knauer, G. A., Martin, J. H., and Karl, D. M., 1984, The flux of particulate matter out of the euphotic zone, in: “Global Ocean Flux Studies: Proceedings of a Workshop,” National Academic Press, Woods Hole, MA.Google Scholar
  90. Knauer, G. A., Redalje, D. G., Harrison, W. G., and Karl, D. M., 1990, New production at the VERTEX time-series site, Deep-Sea Res., 37:1121.CrossRefGoogle Scholar
  91. Lancelot, C. and Billen, G., 1985, Carbon-nitrogen relationships in nutrient metabolism of coastal marine ecosystems, Adv. Aquat. Microbiol., 3:263.Google Scholar
  92. Laws, E. A., Harrison, W. G., and Ditullio, G. R., 1985, A comparison of nitrogen assimilation rates based on 15N uptake and autotrophic protein synthesis. Deep-Sea Res., 32:85.CrossRefGoogle Scholar
  93. Lehman, J. T. and Scavia, D., 1982, Microscale patchiness of nutrients in plankton communities, Science, 216:729.PubMedCrossRefGoogle Scholar
  94. Lewis, M. R., Harrison, W. G., Oakey, N. S., Hebert, D., and Platt, T., 1986, Vertical nitrate fluxes in the oligotrophic ocean, Science, 234:870.PubMedCrossRefGoogle Scholar
  95. Lochte, K. and Turley, C. M., 1988, Bacteria and cyanobacteria associated with phytodetritus in the deep sea, Nature, 333:67.CrossRefGoogle Scholar
  96. Lohrenz, S. E., Knauer, G. A., Asper, V. L., Tuel, M., Michaels, A. F., and Knap, A. H., 1991, Seasonal variability in primary production and particle flux in the northwestern Sargasso Sea: U.S. JGOFS Bermuda Atlantic time-series study, Deep-Sea Res., In press.Google Scholar
  97. Longhurst, A. R., Bedo, A., Harrison, W. G., Head, E. J. H., Horne, E. P., Irwin, B., and Morales, C., 1989, NFLUX: a test of vertical nitrogen flux by diel migrant biota, Deep-Sea Res., 36:1705.CrossRefGoogle Scholar
  98. Longhurst, A. R. and Harrison, W. G., 1988, Vertical nitrogen flux from the oceanic photic zone by diel migrant Zooplankton and nekton, Deep-Sea Res., 35:881.CrossRefGoogle Scholar
  99. Longhurst, A. R. and Harrison, W. G., 1989, The biological pump: Profiles of plankton production and consumption in the upper ocean, Prog. Oceanogr., 22:47.CrossRefGoogle Scholar
  100. Martin, J. H., Knauer, G. A., Karl, D. M., and Broenkow, W. W., 1987, VERTEX: carbon cycling in the northeast Pacific, Deep-Sea Res., 34:267.CrossRefGoogle Scholar
  101. McCarthy, J. J. and Goldman, J. C., 1979, Nitrogenous nutrition of marine phytoplankton in nutrient-depleted waters, Science, 203:670.PubMedCrossRefGoogle Scholar
  102. Moloney, C. L., Bergh, M. O., Field, J. G., and Newell, R. C., 1986, The effect of sedimentation and microbial nitrogen regeneration in a plankton community: a simulation investigation, J. Plankt. Res., 8:427.CrossRefGoogle Scholar
  103. Moloney, C. L. and Field, J. G., 1991, Modelling carbon and nitrogen flows in a microbial plankton community, in: “Protozoa and Their Role in Marine Processes,” P.C., Reid, C.M. Turley and P.H. Burkill, eds., Springer-Verlag, Berlin.Google Scholar
  104. Morris, I., 1980, “The Physiological Ecology of Phytoplankton,” Univ. of California Press, Berkeley.Google Scholar
  105. Musgrave, D. L., Chou, J., and Jenkins, W. J., 1988, Application of a model of upper-ocean physics for studying seasonal cycles of oxygen, J. Geophys. Res., 93:15,679.Google Scholar
  106. Newell, R. C., Moloney, C. L., Field, J. C., Lucas, M. I., and Probyn, T. A., 1988, Nitrogen models at the community level: plant-animal-microbe interactions, in: “Nitrogen Cycling in Coastal Marine Environments,” T.H. Backburn and J. Sϕrensen, eds., John Wiley & Sons, hichester.Google Scholar
  107. Owens, N. J. P., Mantoura, R. F. C., Burkill, P. H., Howland, R. J. M., Pomroy, A. J., and Woodward, E. M. S., 1986, Nutrient cycling studies in Carmarthen Bay: phytoplankton production, nitrogen assimilation and regeneration, Mar. Biol., 93:329.CrossRefGoogle Scholar
  108. Paasche, E., 1988, Pelagic primary production in nearshore waters, in: “Nitrogen Cycling in Coastal Marine Environments,” T.H. Backburn and J. Sϕrensen, eds., John Wiley & Sons, Chichester.Google Scholar
  109. Paasche, E. and Kristiansen, S., 1982, Ammonium regeneration by microzooplankton in the Oslofjord, Mar. Biol., 69:55.CrossRefGoogle Scholar
  110. Packard, T. T., Denis, M., Rodier, M., and Garfield, P., 1988, Deep-ocean metabolic CO2 production: calculations from ETS activity, Deep-Sea Res., 35:371.CrossRefGoogle Scholar
  111. Platt, T. 1981, “Physiological Bases of Phytoplankton Ecology,”, Can. Bull. Fish. Aq. Sci., 210, Ottawa.Google Scholar
  112. Platt, T. and Harrison, W. G., 1985, Biogenic fluxes of carbon and oxygen in the ocean, Nature, 318:55.CrossRefGoogle Scholar
  113. Platt, T., Harrison, W. G., Lewis, M. R., Li, W. K. W., Sathyendranath, S., Smith, R.E.H., and Vezina, A., 1989, Biological production of the oceans: the case for a consensus. Mar. Ecol. Prog. Ser., 52:77.CrossRefGoogle Scholar
  114. Probyn, T. A., 1987, Ammonium regeneration by microplankton in an upwelling environment, Mar. Ecol. Prog. Ser., 37:53.CrossRefGoogle Scholar
  115. Proctor, L. M. and Fuhrman, J. A., 1990, Viral mortality of marine bacteria and cyanobacteria, Nature, 343:60.CrossRefGoogle Scholar
  116. Riley, G. A., 1970, Particulate organic matter in seawater, Adv. Mar. Biol., 8:1.CrossRefGoogle Scholar
  117. Sarmiento, J. L., Fasham, M. J. R., Slater, R., Toggweiler, J. R., and Ducklow, H. W., 1990a, The role of biology in the chemistry of CO2 on the ocean, in: “Chemistry of the Greenhouse Effect,” M. Farrell, ed., Lewis Publ. In press.Google Scholar
  118. Sarmiento, J. L., Thiele, G., Key, R. M., and Moore, W. S., 1990b, Oxygen and nitrate new production and remineralization in the North Atlantic subtropical gyre, J. Geophys. Res., 95:18,303.Google Scholar
  119. SCOR, 1990, Joint Global Ocean Flux Study: Science Plan, JGOFS Report No. 5.Google Scholar
  120. Shanks, A. L. and Trent, J. D., 1979, Marine snow: microscale nutrient patches, Limnol. Oceanogr., 24:850.CrossRefGoogle Scholar
  121. Sherr, B. F. and Sherr, E. B., 1984, Role heterotrophic protozoa in carbon and energy flow in aquatic ecosystems, in: “Current Perspectives in Microbial Ecology,” M.J. Klug and C.A. Reddy, eds., Am. Soc. Microbiol., Washington, D.C.Google Scholar
  122. Sherr, B. F., Sherr, E. B., and Berman, T., 1983, Grazing, growth, and ammonium excretion rates of a heterotrophic microflagellate fed with four species of bacteria, Appl. Environ. Microbiol., 45:1196.PubMedGoogle Scholar
  123. Silver, M. W. and Gowing, M. M., 1991, The “particle” flux: origins and biological components, Prog. Oceanogr., 26:75.CrossRefGoogle Scholar
  124. Slawyk, G., Raimbault, P., and L’Helguen, S., 1990, Recovery of urea nitrogen from seawater for measurement of 15N abundance in urea regeneration studies using the isotope-dilution approach, Mar. Chem., 30:343.CrossRefGoogle Scholar
  125. Smetacek, V., 1985, Role of sinking in diatom life-history cycles: ecological, evolutionary and geological significance, Mar. Biol., 84:239–251.CrossRefGoogle Scholar
  126. Smetacek, V. and Pollehne, F., 1986, Nutrient cycling in pelagic systems: A reappraisal of the conceptual framework, Ophellia, 26:401.CrossRefGoogle Scholar
  127. Sorokin, Y. I., 1981, Microheterotrophic organisms in marine ecosystems, in: “Analysis of Marine Ecosystems,” A.R. Longhurst, ed., Academic Press, London.Google Scholar
  128. Spitzer, W. S. and Jenkins, W. J., 1989, Rates of vertical mixing, gas exchange and new production: Estimates from seasonal gas cycles in the upper ocean near Bermuda, J. Mar. Res., 47:169.CrossRefGoogle Scholar
  129. Stout, J. D., 1980, The role of protozoa in nutrient cycling and energy flow, Adv. Microbiol. Ecol., 4:1.CrossRefGoogle Scholar
  130. Suess, E., 1980, Particulate organic carbon flux in the oceans-surface productivity and oxygen utilization, Nature, 28:260.CrossRefGoogle Scholar
  131. Sugimura, I. and Suzuki, Y., 1988, A high-temperature catalytic oxidation method for the determination of non-volatile dissolved organic carbon in seawater by direct injection of a liquid sample, Mar. Chem., 24:105.CrossRefGoogle Scholar
  132. Suzuki, Y., Sugimura, Y., and Itoh, T., 1985, A catalytic oxidation method for the determination of total nitrogen dissolved in seawater, Mar. Chem., 16:83.CrossRefGoogle Scholar
  133. Sverdrup, H. U., Johnson, M. W., and Fleming, R. H., 1942, “The Oceans. Their Physics, Chemistry, and General Biology,” Prentice-Hall, Englewood Cliffs, N.J.Google Scholar
  134. Taylor, G. T., 1982, The role of pelagic heterotrophic protozoa in nutrient cycling: a review, Ann. Inst. Oceanogr., 58(S): 227.Google Scholar
  135. Tezuka, Y., 1990, Bacterial regeneration of ammonium and phosphate as affected by the carbon:nitrogen:phosphorus ratio of organic substrates, Microb. Ecol., 19:227.CrossRefGoogle Scholar
  136. Toggweiler, J. R., 1989, Is the downward dissolved organic matter (DOM) flux important in carbon transport?, in: “Productivity of the Ocean: Present and Past,” W.H. Berger, V.S. Smetacek and G. Wefer, eds., John Wiley & Sons, Chichester.Google Scholar
  137. Tupas, L. and Koike, I., 1990, Amino acid and ammonium utilization by heterotrophic marine bacteria grown in enriched seawater, Limnol. Oceanogr., 31:998.Google Scholar
  138. Tupas, L. and Koike, I., 1991, Simultaneous uptake and regeneration of ammonium by mixed assemblages of heterotrophic marine bacteria, Mar. Ecol. Prog. Ser., 70:273.CrossRefGoogle Scholar
  139. Verity, P. G., 1985, Grazing, respiration, excretion and growth rates of tintinnids, Limnol. Oceanogr., 30:1268.CrossRefGoogle Scholar
  140. Vezina, A. F. and T. Platt, 1987, Small-scale variability of new production and particulate fluxes in the ocean, Can. J. Fish. Aq. Sci., 44:198.CrossRefGoogle Scholar
  141. Walsh, I., Dymond, J., and Collier, R., 1988, Rates of recycling of biogenic components of settling particles in the ocean derived from sediment trap experiments, Deep-Sea Res., 35:43.CrossRefGoogle Scholar
  142. Wassmann, P., 1990, Relationship between primary and export production in the boreal coastal zone of the North Atlantic, Limnol. Oceanogr., 35:464.CrossRefGoogle Scholar
  143. Wheeler, P. A. and Kirchman, D. L., 1986, Utilization of inorganic and organic nitrogen by bacteria in marine systems, Limnol. Oceanogr., 31:998.CrossRefGoogle Scholar
  144. Williams, P. J. LeB., 1981, Incorporation of microheterotrophic processes into the classical paradigm of the planktonic food web, Kieler Meeresforsch. Sonderh., 5:1.Google Scholar
  145. Williams, P. J. LeB., and Muir, L. R., 1981, Diffusion as a constraint on the biological importance of microzones in the sea, in: “Ecohydrodynamics,” J.C.J. Nihoul, ed., Elsevier, Amsterdam.Google Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • William G. Harrison
    • 1
  1. 1.Biological Oceanography DivisionBedford Institute of OceanographyDartmouthCanada

Personalised recommendations