Bacterioplankton Roles in Cycling of Organic Matter: The Microbial Food Web

  • Jed Fuhrman
Part of the Environmental Science Research book series (ESRH, volume 43)

Abstract

More than a decade has passed since the realization that bacteria are quantitatively important consumers of organic carbon in marine food webs. The basic information on the significance of the microbial food web was put forth eloquently by Pomeroy (1974), who pieced together data from a variety of sources that all indicated a major role of small heterotrophs consuming dissolved and particulate material. However, these ideas did not gain wide recognition until the high abundance of marine bacteria was shown by epifluorescence microscopy (Ferguson and Rublee, 1976; Hobbie et al., 1977), and the bacterial heterotrophic production was shown to be large (i.e., 10–30%) compared to primary production (Hagstrőm et al., 1979; Fuhrman and Azam, 1980; 1982). With reasonable estimates of bacterial growth efficiency (i.e., near 50%), it became clear that heterotrophic bacteria consume an amount of carbon equivalent to approximately 20–60% of total primary production. Williams (1981) reached this conclusion when he synthesized the extant results on bacterial biomass and production. He also showed that “normal” well-known processes and mechanisms could lead to as much as 60% of the primary production becoming dissolved organic carbon (DOC), and subsequently, being taken up by bacteria. Azam et al. (1983) formalized the concept of the microbial loop by which significant quantities of organic matter are produced or processed through prokaryotic and very small eukaryotic organisms, eventually feeding into the larger macrozooplankton.

Keywords

Dissolve Organic Matter Heterotrophic Bacterium Bacterial Production Marine Bacterium Bacterial Biomass 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ackerman, H.-W., and Dubow, M. S., 1987, “Viruses of Prokaryotes. Vol. 1. General Properties of Bacteriophages,” CRC Press, Boca Raton.Google Scholar
  2. Alldredge, A. L., and Cohen, Y., 1987, Can microscale patches persist in the sea? Microelectrode study of marine snow, fecal pellets, Science, 235:689.PubMedGoogle Scholar
  3. Altabet, M.A., 1990, Organic C, N, and stable isotopic composition of particulate matter collected on glass-fiber and aluminum oxide filters, Limnol. Oceanogr., 35:902.Google Scholar
  4. Azam, F., Fenchel, T., Gray, J. G., Meyer-Reil, L. A., and Thingstad, T., 1983, The ecological role of water-column microbes in the sea, Mar. Ecol. Prog. Ser., 10:257.Google Scholar
  5. Azam, F., and Ammerman, J. W., 1984a, Cycling of organic matter by bacterioplankton in pelagic marine ecosystems, in: “Microenvironmental Considerations, Flows of Energy and Materials in Marine Ecosystems,” M. J. R. Fasham, ed., Plenum Publishing Company, New York.Google Scholar
  6. Azam, F., and Ammerman, J. W., 1984b, Mechanisms of organic matter utilization by marine bacterioplankton, Lecture notes on coastal and estuarine studies, in: “Marine Phytoplankton and Productivity,” O. Holm-Hansen, L. Bolis, and R. Gilles, eds., Springer-Verlag, Berlin.Google Scholar
  7. Azam, F., and Cho, B. C., 1987, Bacterial utilization of organic matter in the sea, SGM 41, Ecology of Microbial Communities, Cambridge Univ. Press.Google Scholar
  8. Azam, F., and Hodson, R. E., 1981, Multiphasic kinetics for D-glucose uptake by assemblages of natural marine bacteria, Mar. Ecol. Prog. Ser., 6:213.Google Scholar
  9. Bacastow, R., and Maier-Reimer, E., 1991, Dissolved organic carbon in modeling oceanic new production, Global Biogeochem. Cycles., 5:71.Google Scholar
  10. Banse, K., 1974, On the role of bacterioplankton in the tropical ocean, Mar. Biol., 24:1.Google Scholar
  11. Bergh, O., Borsheim, K. Y., Bratbak, G., and Heldal, M., 1989, High abundance of viruses found in aquatic environments, Nature., 340:467.PubMedGoogle Scholar
  12. Bird, D. F., and Kalff, J., 1984, Empirical relationships between bacterial abundance and chlorophyll concentration in fresh and marine waters, Can. J. Fish. Aquat. Sci., 41:1015.Google Scholar
  13. Bjørnsen, T. K., 1986, Automatic determination of bacterioplankton biomass by image analysis, Appl. Environ. Microbiol., 51:1199.PubMedGoogle Scholar
  14. Bjørnsen, P. K., 1986, Bacterioplankton growth yield in continuous seawater cultures, Mar. Ecol. Prog. Ser., 30:191.Google Scholar
  15. Bjørnsen, P. K., 1988, Phytoplankton exudation of organic matter: Why Do Healthy Cells Do It?, Limnol. Oceanogr., 33:151.Google Scholar
  16. Bjørnsen, P. K., and Kuparinen, J., 1991, Determination of bacterioplankton biomass, net production and growth efficiency in the Southern Ocean, Mar. Ecol. Prog. Ser., 71:185.Google Scholar
  17. Børsheim, K. Y., Bratbak, G., and Heldal, M., 1990, Enumeration and biomass estimation of planktonic bacteria and viruses by transmission electron microscopy, Appl. Environ. Microbiol., 56:352.PubMedGoogle Scholar
  18. Bratbak, G., 1985, Bacterial biovolume and biomass estimations, Appl. Environ, Microbiol., 49:1488.Google Scholar
  19. Bratbak, G., and Thingstad, T.F., 1985, Phytoplankton-bacteria interactions: An apparent paradox?, Analysis of a model ecosystem with both competition and commensalism, Mar. Ecol Prog. Ser., 25:23.Google Scholar
  20. Bratbak, G., Heldal, M., Norland, S., and Thingstad, T.F., 1990, Viruses as partners in spring bloom microbiol trophodynamics, Appl. Environ. Microbiol., 56:1400.PubMedGoogle Scholar
  21. Britschgi, T., and Giovannoni, S. J., 1991, Phylogenetic analysis of a natural marine bacterioplankton population by rRNA gene cloning and sequencing, Appl. Environ. Microbiol., 57:1707.PubMedGoogle Scholar
  22. Bruland, K., 1983, Trace elements in seawater, in: “Chemical Oceanography,” J. P. Riley, and R. Chester, eds., Academic Press, New York.Google Scholar
  23. Chin-Leo, G., and Kirchman, D. L., 1988, Estimating bacterial production in marine waters from the simultaneous incorporation of thymidine and leucine, Appl. Environ. Microbiol., 54:1934.PubMedGoogle Scholar
  24. Cho, B. C., and Azam, F., 1988, Major role of bacteria in biochemical fluxes in the ocean’s interior, Nature, 332:441.Google Scholar
  25. Cho, B., and Azam. F., 1990, Biogeochemical significance of bacterial biomass in the ocean’s euphotic zone, Mar. Ecol. Prog. Ser., 63:253.Google Scholar
  26. Cole, J. J., 1982, Interactions between bacteria and algae in aquatic ecosystems, Ann. Rev. Ecol. Syst., 13:291.Google Scholar
  27. Cole, J. J., Findlay, S., and Pace, M. L., 1988, Bacterial production in fresh and saltwater ecosystems: A cross-system overview, Mar. Ecol. Prog. Ser., 43:1.Google Scholar
  28. Copping, A. E., and Lorenzen, C. J., 1980, Carbon budget of a marine phytoplankton-herbivore system with carbon-14 as tracer, Limnol. Oceanogr., 25:873.Google Scholar
  29. Currie, D. J., and Kalff, J., 1984, The relative importance of bacterioplankton and phytoplankton in phosphorus uptake in freshwater, Limnol. Oceanogr., 29:311.Google Scholar
  30. DeLong, E. F., Wickham, G. S., and Pace, N. R., 1990, Phylogenetic stains: Ribosomal RNA-based probes for the identification of single cells, Science, 243:1360.Google Scholar
  31. Dortch, Q., and Packard, T., 1989, Differences in biomass structure between oligotrophic and eutrophic marine ecosystems, Deep Sea Res., 36:223.Google Scholar
  32. Druffel, E. R. M., Williams, P. M., and Suzuki, Y., 1989, Concentrations and radiocarbon signatures of dissolved organic matter in the Pacific Ocean, 16:991.Google Scholar
  33. Ducklow, H. W., 1991, The passage of carbon through microbial foodwebs: Results from flow network models, Mar. Microb. Food Webs., 5:129.Google Scholar
  34. Dugdale, R. C., and Goering, J. J., 1967, Uptake of new and regenerated form of nitrogen in primary production, Limnol. Oceanogr., 12:196.Google Scholar
  35. Eppley, R. W., and Peterson, B. J., 1979, Particulate organic matter flux and planktonic new production in the deep ocean, Nature, 282:677.Google Scholar
  36. Eppley, R. W., Horrigan, S. G., Fuhrman, J. A., Brooks, E. R., Price, C. C., and Sellner, K., 1981, Origins of dissolved organic matter in Southern California coastal waters: Experiments on the role of Zooplankton, Mar. Ecol. Prog. Ser., 6:149.Google Scholar
  37. Ferguson, R. L., and Rublee, P., 1976, Contribution of bacteria to standing crop of coastal plankton, Limnol. Oceanogr., 21:141.Google Scholar
  38. Ferguson, R. L., Buckley, E. N., and Palumbo, A. V., 1984, Response of marine bacterioplankton to differential filtration and confinement, Appl. Environ. Microbiol., 47:49.PubMedGoogle Scholar
  39. Flynn, K.J., and Butler, I., 1986, Nitrogen sources for the growth of marine microalgae: role of dissolved free amino acids, Mar. Ecol. Prog. Ser., 34:281.Google Scholar
  40. Frost, B. W., 1984, Utilization of phytoplankton production in the surface layer, in: “Global Ocean Flux Study Workshop, US National Research Council.”.Google Scholar
  41. Fuhrman, J. A., 1987, Close coupling between release and uptake of dissolved free amino acids in seawater studied by an isotope dilution approach, Mar. Ecol. Prog. Ser., 37:45.Google Scholar
  42. Fuhrman, J. A., and Azam, F., 1980, Bacterioplankton secondary production estimates for coastal waters of British Columbia, Antarctica, and California, AppL Environ. Microbiol., 39:1085.PubMedGoogle Scholar
  43. Fuhrman, J. A., and Azam, F., 1982, Thymidine incorporation as a measure of heterotrophic bacterioplankton production in marine surface waters: Evaluation and field results, Mar. Biol., 66:109.Google Scholar
  44. Fuhrman, J. A., Horrigan, S. G., and Capone, D. G., 1988, The use of 13N as tracer for bacterial and algal uptake of ammonium from seawater, Mar. Ecol. Prog. Ser., 45:271.Google Scholar
  45. Fuhrman, J. A., Sleeter, T. D., Carlson, C. A., and Proctor, L. M., 1989, Dominance of bacterial biomass in the Sargasso Sea and its ecological implications, Mar. Ecol. Prog. Ser., 57:207.Google Scholar
  46. Giovannoni, S. J., Britschgi, T. B., Moyer, C. L., and Field, K. G., 1990, Genetic diversity in Sargasso Sea bacterioplankton, Nature, 345:60.PubMedGoogle Scholar
  47. Glibert, P. M., 1982, Regional studies of daily, seasonal, and size fractionation variability in ammonium regeneration, Mar. Biol., 70:209.Google Scholar
  48. Goldman, J. C., Caron. D. A., and Dennett, M. R., 1987, Regulation of gross growth efficiency and ammonium regeneration in bacteria by substrate C:N ratio, Limnol. Oceanogr., 32:1239.Google Scholar
  49. Hagstrőm, Å., Larsson, U., Horstedt, P., and Normark, S., 1979, Frequency of dividing cells, a new approach to the determination of bacterial growth rates in aquatic environments, Appl. Environ. Microbiol., 37:805.PubMedGoogle Scholar
  50. Hagstrőm, Å., Azam, F., Andersson, A., Wikner, J., and Rassoulzadegan, F., 1988, Microbial loop in an oligotrophic pelagic marine ecosystem: Possible roles of cyanobacteria and nanoflagellates in the organic fluxes, Mar. Ecol. Prog. Ser., 49:171.Google Scholar
  51. Harrison, W. G., Azam, F., Renger, E. H., and Eppley, R. W., 1977, Some experiments on phosphate assimilation by coastal marine phytoplankton, Mar. Biol., 40:9.Google Scholar
  52. Hobbie, J. E., Daley, R. J., and Jasper, S., 1977, Use of Nuclepore filters for counting bacteria by fluorescence microscopy, Appl. Environ. Microbiol., 33:1225.PubMedGoogle Scholar
  53. Horrigan, S. G., Hagström, A., Koike, I., and Azam, F., 1988, Inorganic nitrogen utilization by assemblages of marine bacteria in seawater culture, Mar. Ecol. Prog. Ser., 50:147.Google Scholar
  54. Hutchinson, G. E., 1961, The paradox of the plankton, Amer. Nat., 45:137.Google Scholar
  55. Jackson, G., 1988, Implications of high dissolved organic matter concentrations for oceanic properties and processes, Oceanography, 1:28.Google Scholar
  56. Jackson, G. A., 1989, Simulation of bacterial attraction and adhesion to falling particles in an aquatic environment, Limnol. Oceanogr., 34:514.Google Scholar
  57. Jackson, G. A., and Williams, P. M., 1985, Importance of dissolved organic nitrogen and phosphorus to biological nutrient cycling, Deep Sea Res., 32:223.Google Scholar
  58. Jannasch, H. W., and Jones, G. E., 1959, Bacterial populations in sea water as determined by different methods of enumeration, Limnol. Oceanogr., 4:128.Google Scholar
  59. Jumars, P. A., Penry, D. L., Baross, J. A., Perry, M. J., and Frost, B. W., 1989, Closing the microbial loop: Dissolved carbon pathway to heterotrophic bacteria from incomplete ingestion, digestion, and absorption in animals, Deep Sea Res., 36:483.Google Scholar
  60. Karl, D. M., Knauer, G. A., and Martin, J. H., 1988, Downward flux of particulate organic matter in the ocean: A particle decomposition paradox, Nature, 332:438.Google Scholar
  61. Kieber, D. J., McDaniel, J. A., and Mopper, K., 1989, Photochemical source of biological substrates in seawater: Implications for carbon cycling, Nature, 341:637.Google Scholar
  62. Kirchman, D. L., 1990, Limitation of bacterial growth by dissolved organic matter in the subarctic Pacific, Mar. Ecol. Prog. Ser., 62:47.Google Scholar
  63. Kirchman, D. L., Keil, R. G., and Wheeler, P. A., 1989, The effect of amino acids on ammonium utilization and regeneration by heterotrophic bacteria in the subarctic Pacific, Deep Sea Res., 36:1763.Google Scholar
  64. Kirchman, D. L., Keil, R. G., and Wheeler, P. A., 1990, Carbon limitation of ammonium uptake by heterotrophic bacteria in the subarctic Pacific, Limnol. Oceanogr, 35:1258.Google Scholar
  65. Kirchman, D. L., K’Nees, E., and Hodson, R. E., 1985, Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems, Appl. Environ. Microbiol., 49:599.PubMedGoogle Scholar
  66. Lampert, W., 1978, Release of dissolved organic carbon by grazing Zooplankton, Limnol. Oceanogr., 23:831.Google Scholar
  67. Laws, E. A., Redalje, D. G., Haas, L. W., Bienfang, P. K., Eppley, R. W., Harrison, W. G., Karl, D. M., and Marra, J., 1984, High phytoplankton growth and production rates in oligotrophic Hawaiian coastal waters, Limnol. Oceanogr., 29:1161.Google Scholar
  68. Lee, S., and Fuhrman, J. A., 1987, Relatioships between biovolume and biomass of naturally derived marine bacterioplankton, Appl. Environ. Microbiol., 53:1298.PubMedGoogle Scholar
  69. Lee, S., and Fuhrman, J. A., 1990, DNA hybridization to compare species compositions of natural bacterioplankton assemblages, Appl. Environ. Microbiol., 56:739.PubMedGoogle Scholar
  70. Lee, S., and Fuhrman, J. A., Spatial and temporal variation of natural bacterioplankton assemblages studied by total genomic DNA cross-hybridization, Limnol. Oceanogr., in press.Google Scholar
  71. Lenski, R. E., 1988, Dynamics of interactions between bacteria and virulent bacteriophage, Adv. Microb. Ecol., 10:1.Google Scholar
  72. Li, W. K. W., Dickie, P. M., Irwin, B. D., and Wood, A. M., Biomass of bacteria, cyanobacteria, prochlorophytes, and photosynthetic eukaryotes in the Sargasso Sea, Deep Sea Res., in press.Google Scholar
  73. Linley, E. A. S., Newell, R. C., and Lucas, M. I., 1983, Quantitative relationships between phytoplankton, bacteria, and heterotrophic microflagellates in shelf waters, Mar. Ecol. Prog. Ser., 12.Google Scholar
  74. Martin, J. H., and Fitzwater, S. E., 1988, Iron deficiency limits phytoplankton growth in the north-east Pacific subarctic, Nature, 331:341.Google Scholar
  75. McManus, G. B., 1991, Flow analysis of a planktonic microbial food web model, Mar. Microb. Food Webs., 5:145.Google Scholar
  76. McManus, G. B., and Fuhrman, J. A., 1988, Control of marine bacterioplankton populations: Measurement and significance of grazing, Hydrobiologia, 159:51.Google Scholar
  77. Mitchell, J. G., and Fuhrman, J. A., 1989, Centimeter scale vertical heterogeneity in bacteria and chlorophyll a, Mar. Ecol. Prog. Ser., 54:141.Google Scholar
  78. Mitchell, J. G., Okubo, A., and Fuhrman, J. A., 1985, Microzones form the basis for a stratified microbial ecosystem, Nature, (316): 58.Google Scholar
  79. Murphy, T. P., Lean, D. R. S., and Nalewajko, C., 1976, Blue-green algae: their excretion of iron-selective chelators enables them to dominate other algae, Science, 192:900.PubMedGoogle Scholar
  80. Olson, R. J., Chisholm, S. W., Zettler, E. R., Altabet, M. A., and Dusenberry, J. A., 1990, Spatial and temporal distributions of prochlorophyte picoplankton in the North Atlantic Ocean, Deep Sea Res., 37:1033.Google Scholar
  81. Pace, N. R., Stahl, D. A., Lane, D. L., and Olsen, G. J., 1986, The analysis of natural microbial populations by rRNA sequences, Adv. Microbiol. Ecol., 9:1.Google Scholar
  82. Paul, J. H., and Carlson, D. J., 1984, Genetic material in the marine environment: implication for bacterial DNA, Limnol. Oceangr., 29:1091.Google Scholar
  83. Pomeroy, L. R., 1974, The ocean’s food web, a changing paradigm, Bioscience, 24:499.Google Scholar
  84. Proctor, L. M., and Fuhrman, J. A., 1990, Viral mortality of marine bacteria and cyanobacteria, Nature, 343:60.Google Scholar
  85. Proctor, L. M., and Fuhrman, J. A., 1991, Roles of viral infection in organic particle flux, Mar. Ecol. Prog. Ser., 69:133.Google Scholar
  86. Proctor, L. M., Fuhrman, J. A., and Ledbetter, M. C., 1988, Marine bacteriophages and bacterial mortality, EOS Trans. Am. Geophys. Union., 69:1111.Google Scholar
  87. Roman, M. R., Ducldow, H. W., Fuhrman, J. A., Garcide, C., Glibert, P. M., Malone, T. C., and McManus, G. B., 1988, Production, consumption and nutrient cycling in a laboratory mesocosm, Mar. Ecol. Prog. Ser., 42:39.Google Scholar
  88. Roy, S., Harris, R. P., and Poulet, S. A., 1989, Inefficient feeding by Calanus helgolandicus and Temora lingicornis on Coscinodiscus wailesii: quantitative estimation using chlorophyll-type pigments and effects on dissolved free amino acids, Mar. Ecol. Prog. Ser., 52:145.Google Scholar
  89. Sarmiento, J. L., Toggweiler, J. R., and Najjar, R., 1988, Ocean carbon cycle dynamics and atmospheric pCO2, Philos. Trans. R. Soc. London, Ser. A., 325:3.Google Scholar
  90. Scavia, D., 1988, On the role of bacteria in secondary production, Limnol. Oceanogr., 33:1220.’.Google Scholar
  91. Scavia, D., and Laird, G. A. 1987, Bacterioplankton in lake Michigan: Dynamics, controls, and significance to carbon flux, Limnol. Oceanogr., 32:1017.Google Scholar
  92. Schmidt, T. M., DeLong, E. F., and Pace, N. R., 1991, Analysis of a marine picoplankton community by 16S rRNA gene cloning and sequencing, J. Bacteriol., 173:4371.PubMedGoogle Scholar
  93. Sharp, J. H., 1973, Size classes of organic carbon in seawater, Limnol. Oceanogr., 18:441.Google Scholar
  94. Sharp, J. H., Underhill, P. A., and Hughes, D. J., 1979, Interaction (allelopathy) between marine diatoms: Thalassiosira pseudonana and Phaeodactylum tricornutum, J. Phycol., 15:353.Google Scholar
  95. Sherr, B. F., Sherr, E. B., and Hopkinson, C. S., 1988, Trophic interactions within pelagic microbial communities: Indications of feedback regulation of carbon flow, Hydrobiologia, 159:19.Google Scholar
  96. Sherr, E. B., and Sherr, B.F., 1991, Planktonic microbes: Tiny cells at the base of the ocean’s food web, Trends Ecol. Evol., 6:50.PubMedGoogle Scholar
  97. Sieburth, J. M., Johnson, P. W., and Hargraves, P. E., 1988, Ultrastructure and ecology of Aureococcus anophagefferens gen. et sp. nov. (Chrysophyseae): The dominant picoplankter during a bloom in Narragansett Bay, Rhode Island, Summer 1985, J. Phycol, 24:416.Google Scholar
  98. Simon, M., and Azam, F., 1989, Protein content and protein synthesis rates of planktonic marine bacteria, Mar. Ecol. Prog. Ser., 51:201.Google Scholar
  99. Sorokin, Y. I., 1971, Bacterial populations as components of oceanic ecosystems, Mar. Biol., 11:101.Google Scholar
  100. Stockner, J. G., and Antia, N. J., 1986, Algal picoplankton from marine and freshwater ecosystems: A multidisciplinary perspective, Can. J. Fish. Aquat. Sci., 43:2472.Google Scholar
  101. Stramski, D., and Kiefer, D. A., 1990, Optical properties of marine bacteria, Ocean Optics X. Conf. Proc. Int. Soc. for Optical Engineering, Orlando, FL. 1302:250.Google Scholar
  102. Strayer, D., 1988, On the limits to secondary production, Limnol. Oceanogr., 33:1217.Google Scholar
  103. Sugimura, Y., and Suzuki, Y., 1988, A high-temperature catalytic oxidation method for the determination of non-volatile dissolved organic carbon in seawater by direct injection of liquid sample, Mar. Chem., 24:105.Google Scholar
  104. Suttle, C. A., Fuhrman, J. A., and Capone, D. G., 1990, Rapid ammonium cycling and concentration-dependent partitioning of ammonium and phosphate: implications for carbon transfer in planktonic communities, Limnol. Oceanogr., 36:424.Google Scholar
  105. Suttle, C. A., Fuhrman, J. A., and Capone, D. G. 1990, Rapid flux and concentration dependent partitioning of ammonium in marine plankton communities, Limnol. Oceanogr., 35:424.Google Scholar
  106. Suttle, C. A., Chan, A. M., and Cottrell, M. T., 1991, Use of ultrafiltration to isolate viruses from seawater which are pathogens of marine phytoplankton, Appl. Environ. Microbiol., 57:721.PubMedGoogle Scholar
  107. Suzuki, Y., Sugimura, Y., and Itoh, T., 1985, A catalytic oxidation method for the determination of total nitrogen dissolved in seawater, Mar. Chem., 16:83.Google Scholar
  108. Toggweiler, J. R., 1988, Is the downward dissolved organic matter flux important in carbon transport? Productivity of the ocean: Present and past (Dahlem Conference), W. H. Berger, V. S. Smetacek, and G. Wefer, New York, John Wiley.Google Scholar
  109. Tupas, L., and Koike, I., 1990, Amino acid and ammonium utilization by heterotrophic marine bacteria grown in enriched seawater, Limnol. Oceanogr., 35:1145.Google Scholar
  110. Vezina, A. F., and Platt, T., 1988, Food web dynamics in the ocean, Part 1. Best estimates of flow networks using inverse methods, Mar. Ecol. Prog. Ser., 42:269.Google Scholar
  111. Wheeler, P. A., and Kirchman, D. L., 1986, Utilization of inorganic and organic nitrogen by bacteria in marine systems, Limnol. Oceanogr., 31:998.Google Scholar
  112. Williams, P. J. J., 1981, Incorporation of microheterotrophic processes into the classical paradigm of the planktonic food web, Kieler Meeresforsch., Sonderh. 5:1.Google Scholar
  113. Williams, P. J. J., 1984, Bacterial production in marine food chains, Emperor’s new suit of clothes? Flows in energy and materials in marine ecosystems: Theory and practice, M. J. R. Fasham, ed., Plenum, New York.Google Scholar
  114. Williams, P. J. J., 1990, The importance of losses during microbial growth: Commentary on the physiology, measurement and ecology of the release of dissolved organic material, Mar. Microb. Food Webs., 4:175.Google Scholar
  115. Williams, P. M., and Druffel, E. R. M., 1988, Dissolved organic matter in the oceans: Comments on a controversy, Oceanography, 1:14.Google Scholar
  116. Wood, A. M., and Van Valen, L. M., 1990, Paradox lost? On release of energy-rich compounds by phytoplankton, Mar. Microb. Food Webs., 4:103.Google Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • Jed Fuhrman
    • 1
  1. 1.Department of Biological SciencesUniversity of Southern CaliforniaLos AngelesUSA

Personalised recommendations